Spaces:
Runtime error
Runtime error
File size: 2,275 Bytes
73f9174 95f7ff3 b6827ba 50639ab 2e937f5 bcda593 2e937f5 57d46c6 b6827ba d031db7 8ac912b b6827ba 73f9174 8ac912b b6827ba 8ac912b b11c8cd d031db7 b6827ba 7e87179 95f7ff3 8ac912b 95f7ff3 8ac912b 7e87179 8ac912b 95f7ff3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import os
import requests
from bs4 import BeautifulSoup
api_token = os.environ.get("TOKEN")
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
headers = {"Authorization": f"Bearer {api_token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def analyze_sentiment(pl7_text):
prompt = f'''<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You're going to deeply analyze the text I'm going to give you and you're only going to tell me which category it belongs to by answering only the words that correspond to the following categories:
For posts that talk about chat models/LLM, return "Chatmodel/LLM"
For posts that talk about image generation models, return "image_generation"
For texts that ask for information from the community, return "questions"
For posts about fine-tuning or model adjustment, return "fine_tuning"
For posts related to ethics and bias in AI, return "ethics_bias"
For posts about datasets and data preparation, return "datasets"
For posts about tools and libraries, return "tools_libraries"
For posts containing tutorials and guides, return "tutorials_guides"
For posts about debugging and problem-solving, return "debugging"
Respond only with the category name, without any additional explanation or text.
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
{pl7_text}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
'''
output = query({"inputs": prompt})
if isinstance(output, list) and len(output) > 0:
generated_text = output[0].get('generated_text', '')
return generated_text.strip()
return "Error: No response from the model"
# Fetch a single post
url = 'https://huggingface.co/posts'
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
pl7_element = soup.find(class_='pl-7')
if pl7_element:
pl7_text = pl7_element.text.strip()
print("Analyzing post...")
llm_response = analyze_sentiment(pl7_text)
print(f"\nLLM Response:\n{llm_response}")
else:
print("No post found with class 'pl-7'")
else:
print(f"Error {response.status_code} when retrieving {url}") |