Spaces:
Paused
Paused
alessandro trinca tornidor
commited on
Commit
·
8959fb9
1
Parent(s):
d60d246
[refactor] move routes to dedicated routes.py, move app helper functions to dedicated app_helpers.py
Browse files- app/main.py +6 -333
- app/routes.py +19 -0
- utils/app_helpers.py +322 -0
app/main.py
CHANGED
@@ -1,360 +1,33 @@
|
|
1 |
-
import argparse
|
2 |
import logging
|
3 |
import os
|
4 |
-
import re
|
5 |
import sys
|
6 |
-
from typing import Callable
|
7 |
-
|
8 |
-
import cv2
|
9 |
import gradio as gr
|
10 |
-
import nh3
|
11 |
-
import numpy as np
|
12 |
-
import torch
|
13 |
-
import torch.nn.functional as F
|
14 |
from fastapi import FastAPI
|
15 |
from fastapi.staticfiles import StaticFiles
|
16 |
from fastapi.templating import Jinja2Templates
|
17 |
-
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor
|
18 |
|
19 |
-
from
|
20 |
-
from
|
21 |
-
from model.llava.mm_utils import tokenizer_image_token
|
22 |
-
from model.segment_anything.utils.transforms import ResizeLongestSide
|
23 |
-
from utils import constants, session_logger, utils
|
24 |
|
25 |
|
26 |
session_logger.change_logging(logging.DEBUG)
|
27 |
|
28 |
CUSTOM_GRADIO_PATH = "/"
|
29 |
app = FastAPI(title="lisa_app", version="1.0")
|
|
|
30 |
|
31 |
FASTAPI_STATIC = os.getenv("FASTAPI_STATIC")
|
32 |
os.makedirs(FASTAPI_STATIC, exist_ok=True)
|
33 |
app.mount("/static", StaticFiles(directory=FASTAPI_STATIC), name="static")
|
34 |
templates = Jinja2Templates(directory="templates")
|
35 |
-
placeholders = utils.create_placeholder_variables()
|
36 |
-
|
37 |
-
|
38 |
-
@app.get("/health")
|
39 |
-
@session_logger.set_uuid_logging
|
40 |
-
def health() -> str:
|
41 |
-
import json
|
42 |
-
|
43 |
-
try:
|
44 |
-
logging.info("health check")
|
45 |
-
return json.dumps({"msg": "ok"})
|
46 |
-
except Exception as e:
|
47 |
-
logging.error(f"exception:{e}.")
|
48 |
-
return json.dumps({"msg": "request failed"})
|
49 |
-
|
50 |
-
|
51 |
-
@session_logger.set_uuid_logging
|
52 |
-
def parse_args(args_to_parse):
|
53 |
-
parser = argparse.ArgumentParser(description="LISA chat")
|
54 |
-
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1-explanatory")
|
55 |
-
parser.add_argument("--vis_save_path", default="./vis_output", type=str)
|
56 |
-
parser.add_argument(
|
57 |
-
"--precision",
|
58 |
-
default="fp16",
|
59 |
-
type=str,
|
60 |
-
choices=["fp32", "bf16", "fp16"],
|
61 |
-
help="precision for inference",
|
62 |
-
)
|
63 |
-
parser.add_argument("--image_size", default=1024, type=int, help="image size")
|
64 |
-
parser.add_argument("--model_max_length", default=512, type=int)
|
65 |
-
parser.add_argument("--lora_r", default=8, type=int)
|
66 |
-
parser.add_argument(
|
67 |
-
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
|
68 |
-
)
|
69 |
-
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
|
70 |
-
parser.add_argument("--load_in_8bit", action="store_true", default=False)
|
71 |
-
parser.add_argument("--load_in_4bit", action="store_true", default=True)
|
72 |
-
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
|
73 |
-
parser.add_argument(
|
74 |
-
"--conv_type",
|
75 |
-
default="llava_v1",
|
76 |
-
type=str,
|
77 |
-
choices=["llava_v1", "llava_llama_2"],
|
78 |
-
)
|
79 |
-
return parser.parse_args(args_to_parse)
|
80 |
-
|
81 |
-
|
82 |
-
@session_logger.set_uuid_logging
|
83 |
-
def get_cleaned_input(input_str):
|
84 |
-
logging.info(f"start cleaning of input_str: {input_str}.")
|
85 |
-
input_str = nh3.clean(
|
86 |
-
input_str,
|
87 |
-
tags={
|
88 |
-
"a",
|
89 |
-
"abbr",
|
90 |
-
"acronym",
|
91 |
-
"b",
|
92 |
-
"blockquote",
|
93 |
-
"code",
|
94 |
-
"em",
|
95 |
-
"i",
|
96 |
-
"li",
|
97 |
-
"ol",
|
98 |
-
"strong",
|
99 |
-
"ul",
|
100 |
-
},
|
101 |
-
attributes={
|
102 |
-
"a": {"href", "title"},
|
103 |
-
"abbr": {"title"},
|
104 |
-
"acronym": {"title"},
|
105 |
-
},
|
106 |
-
url_schemes={"http", "https", "mailto"},
|
107 |
-
link_rel=None,
|
108 |
-
)
|
109 |
-
logging.info(f"cleaned input_str: {input_str}.")
|
110 |
-
return input_str
|
111 |
-
|
112 |
-
|
113 |
-
@session_logger.set_uuid_logging
|
114 |
-
def set_image_precision_by_args(input_image, precision):
|
115 |
-
if precision == "bf16":
|
116 |
-
input_image = input_image.bfloat16()
|
117 |
-
elif precision == "fp16":
|
118 |
-
input_image = input_image.half()
|
119 |
-
else:
|
120 |
-
input_image = input_image.float()
|
121 |
-
return input_image
|
122 |
-
|
123 |
-
|
124 |
-
@session_logger.set_uuid_logging
|
125 |
-
def preprocess(
|
126 |
-
x,
|
127 |
-
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
|
128 |
-
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
|
129 |
-
img_size=1024,
|
130 |
-
) -> torch.Tensor:
|
131 |
-
"""Normalize pixel values and pad to a square input."""
|
132 |
-
logging.info("preprocess started")
|
133 |
-
# Normalize colors
|
134 |
-
x = (x - pixel_mean) / pixel_std
|
135 |
-
# Pad
|
136 |
-
h, w = x.shape[-2:]
|
137 |
-
padh = img_size - h
|
138 |
-
padw = img_size - w
|
139 |
-
x = F.pad(x, (0, padw, 0, padh))
|
140 |
-
logging.info("preprocess ended")
|
141 |
-
return x
|
142 |
-
|
143 |
-
|
144 |
-
@session_logger.set_uuid_logging
|
145 |
-
def get_model(args_to_parse):
|
146 |
-
logging.info("starting model preparation...")
|
147 |
-
os.makedirs(args_to_parse.vis_save_path, exist_ok=True)
|
148 |
-
|
149 |
-
# global tokenizer, tokenizer
|
150 |
-
# Create model
|
151 |
-
_tokenizer = AutoTokenizer.from_pretrained(
|
152 |
-
args_to_parse.version,
|
153 |
-
cache_dir=None,
|
154 |
-
model_max_length=args_to_parse.model_max_length,
|
155 |
-
padding_side="right",
|
156 |
-
use_fast=False,
|
157 |
-
)
|
158 |
-
_tokenizer.pad_token = _tokenizer.unk_token
|
159 |
-
args_to_parse.seg_token_idx = _tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
|
160 |
-
torch_dtype = torch.float32
|
161 |
-
if args_to_parse.precision == "bf16":
|
162 |
-
torch_dtype = torch.bfloat16
|
163 |
-
elif args_to_parse.precision == "fp16":
|
164 |
-
torch_dtype = torch.half
|
165 |
-
kwargs = {"torch_dtype": torch_dtype}
|
166 |
-
if args_to_parse.load_in_4bit:
|
167 |
-
kwargs.update(
|
168 |
-
{
|
169 |
-
"torch_dtype": torch.half,
|
170 |
-
"load_in_4bit": True,
|
171 |
-
"quantization_config": BitsAndBytesConfig(
|
172 |
-
load_in_4bit=True,
|
173 |
-
bnb_4bit_compute_dtype=torch.float16,
|
174 |
-
bnb_4bit_use_double_quant=True,
|
175 |
-
bnb_4bit_quant_type="nf4",
|
176 |
-
llm_int8_skip_modules=["visual_model"],
|
177 |
-
),
|
178 |
-
}
|
179 |
-
)
|
180 |
-
elif args_to_parse.load_in_8bit:
|
181 |
-
kwargs.update(
|
182 |
-
{
|
183 |
-
"torch_dtype": torch.half,
|
184 |
-
"quantization_config": BitsAndBytesConfig(
|
185 |
-
llm_int8_skip_modules=["visual_model"],
|
186 |
-
load_in_8bit=True,
|
187 |
-
),
|
188 |
-
}
|
189 |
-
)
|
190 |
-
_model = LISAForCausalLM.from_pretrained(
|
191 |
-
args_to_parse.version, low_cpu_mem_usage=True, vision_tower=args_to_parse.vision_tower, seg_token_idx=args_to_parse.seg_token_idx, **kwargs
|
192 |
-
)
|
193 |
-
_model.config.eos_token_id = _tokenizer.eos_token_id
|
194 |
-
_model.config.bos_token_id = _tokenizer.bos_token_id
|
195 |
-
_model.config.pad_token_id = _tokenizer.pad_token_id
|
196 |
-
_model.get_model().initialize_vision_modules(_model.get_model().config)
|
197 |
-
vision_tower = _model.get_model().get_vision_tower()
|
198 |
-
vision_tower.to(dtype=torch_dtype)
|
199 |
-
if args_to_parse.precision == "bf16":
|
200 |
-
_model = _model.bfloat16().cuda()
|
201 |
-
elif (
|
202 |
-
args_to_parse.precision == "fp16" and (not args_to_parse.load_in_4bit) and (not args_to_parse.load_in_8bit)
|
203 |
-
):
|
204 |
-
vision_tower = _model.get_model().get_vision_tower()
|
205 |
-
_model.model.vision_tower = None
|
206 |
-
import deepspeed
|
207 |
-
|
208 |
-
model_engine = deepspeed.init_inference(
|
209 |
-
model=_model,
|
210 |
-
dtype=torch.half,
|
211 |
-
replace_with_kernel_inject=True,
|
212 |
-
replace_method="auto",
|
213 |
-
)
|
214 |
-
_model = model_engine.module
|
215 |
-
_model.model.vision_tower = vision_tower.half().cuda()
|
216 |
-
elif args_to_parse.precision == "fp32":
|
217 |
-
_model = _model.float().cuda()
|
218 |
-
vision_tower = _model.get_model().get_vision_tower()
|
219 |
-
vision_tower.to(device=args_to_parse.local_rank)
|
220 |
-
_clip_image_processor = CLIPImageProcessor.from_pretrained(_model.config.vision_tower)
|
221 |
-
_transform = ResizeLongestSide(args_to_parse.image_size)
|
222 |
-
_model.eval()
|
223 |
-
logging.info("model preparation ok!")
|
224 |
-
return _model, _clip_image_processor, _tokenizer, _transform
|
225 |
-
|
226 |
-
|
227 |
-
@session_logger.set_uuid_logging
|
228 |
-
def get_inference_model_by_args(args_to_parse):
|
229 |
-
logging.info(f"args_to_parse:{args_to_parse}, creating model...")
|
230 |
-
model, clip_image_processor, tokenizer, transform = get_model(args_to_parse)
|
231 |
-
logging.info("created model, preparing inference function")
|
232 |
-
no_seg_out, error_happened = placeholders["no_seg_out"], placeholders["error_happened"]
|
233 |
-
|
234 |
-
@session_logger.set_uuid_logging
|
235 |
-
def inference(input_str, input_image):
|
236 |
-
## filter out special chars
|
237 |
-
|
238 |
-
input_str = get_cleaned_input(input_str)
|
239 |
-
logging.info(f"input_str type: {type(input_str)}, input_image type: {type(input_image)}.")
|
240 |
-
logging.info(f"input_str: {input_str}.")
|
241 |
-
|
242 |
-
## input valid check
|
243 |
-
if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
|
244 |
-
output_str = "[Error] Invalid input: ", input_str
|
245 |
-
return error_happened, output_str
|
246 |
-
|
247 |
-
# Model Inference
|
248 |
-
conv = conversation_lib.conv_templates[args_to_parse.conv_type].copy()
|
249 |
-
conv.messages = []
|
250 |
-
|
251 |
-
prompt = input_str
|
252 |
-
prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + prompt
|
253 |
-
if args_to_parse.use_mm_start_end:
|
254 |
-
replace_token = (
|
255 |
-
utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN
|
256 |
-
)
|
257 |
-
prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token)
|
258 |
-
|
259 |
-
conv.append_message(conv.roles[0], prompt)
|
260 |
-
conv.append_message(conv.roles[1], "")
|
261 |
-
prompt = conv.get_prompt()
|
262 |
-
|
263 |
-
image_np = cv2.imread(input_image)
|
264 |
-
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
265 |
-
original_size_list = [image_np.shape[:2]]
|
266 |
-
|
267 |
-
image_clip = (
|
268 |
-
clip_image_processor.preprocess(image_np, return_tensors="pt")[
|
269 |
-
"pixel_values"
|
270 |
-
][0]
|
271 |
-
.unsqueeze(0)
|
272 |
-
.cuda()
|
273 |
-
)
|
274 |
-
logging.info(f"image_clip type: {type(image_clip)}.")
|
275 |
-
image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)
|
276 |
-
|
277 |
-
image = transform.apply_image(image_np)
|
278 |
-
resize_list = [image.shape[:2]]
|
279 |
-
|
280 |
-
image = (
|
281 |
-
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
|
282 |
-
.unsqueeze(0)
|
283 |
-
.cuda()
|
284 |
-
)
|
285 |
-
logging.info(f"image_clip type: {type(image_clip)}.")
|
286 |
-
image = set_image_precision_by_args(image, args_to_parse.precision)
|
287 |
-
|
288 |
-
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
|
289 |
-
input_ids = input_ids.unsqueeze(0).cuda()
|
290 |
-
|
291 |
-
output_ids, pred_masks = model.evaluate(
|
292 |
-
image_clip,
|
293 |
-
image,
|
294 |
-
input_ids,
|
295 |
-
resize_list,
|
296 |
-
original_size_list,
|
297 |
-
max_new_tokens=512,
|
298 |
-
tokenizer=tokenizer,
|
299 |
-
)
|
300 |
-
output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]
|
301 |
-
|
302 |
-
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
|
303 |
-
text_output = text_output.replace("\n", "").replace(" ", " ")
|
304 |
-
text_output = text_output.split("ASSISTANT: ")[-1]
|
305 |
-
|
306 |
-
logging.info(f"text_output type: {type(text_output)}, text_output: {text_output}.")
|
307 |
-
save_img = None
|
308 |
-
for i, pred_mask in enumerate(pred_masks):
|
309 |
-
if pred_mask.shape[0] == 0:
|
310 |
-
continue
|
311 |
-
|
312 |
-
pred_mask = pred_mask.detach().cpu().numpy()[0]
|
313 |
-
pred_mask = pred_mask > 0
|
314 |
-
|
315 |
-
save_img = image_np.copy()
|
316 |
-
save_img[pred_mask] = (
|
317 |
-
image_np * 0.5
|
318 |
-
+ pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
|
319 |
-
)[pred_mask]
|
320 |
-
|
321 |
-
output_str = f"ASSISTANT: {text_output}"
|
322 |
-
output_image = no_seg_out if save_img is None else save_img
|
323 |
-
logging.info(f"output_image type: {type(output_image)}.")
|
324 |
-
return output_image, output_str
|
325 |
-
|
326 |
-
logging.info("prepared inference function!")
|
327 |
-
return inference
|
328 |
-
|
329 |
-
|
330 |
-
@session_logger.set_uuid_logging
|
331 |
-
def get_gradio_interface(
|
332 |
-
fn_inference: Callable
|
333 |
-
):
|
334 |
-
return gr.Interface(
|
335 |
-
fn_inference,
|
336 |
-
inputs=[
|
337 |
-
gr.Textbox(lines=1, placeholder=None, label="Text Instruction"),
|
338 |
-
gr.Image(type="filepath", label="Input Image")
|
339 |
-
],
|
340 |
-
outputs=[
|
341 |
-
gr.Image(type="pil", label="Segmentation Output"),
|
342 |
-
gr.Textbox(lines=1, placeholder=None, label="Text Output")
|
343 |
-
],
|
344 |
-
title=constants.title,
|
345 |
-
description=constants.description,
|
346 |
-
article=constants.article,
|
347 |
-
examples=constants.examples,
|
348 |
-
allow_flagging="auto"
|
349 |
-
)
|
350 |
|
351 |
|
352 |
logging.info(f"sys.argv:{sys.argv}.")
|
353 |
-
args = parse_args([])
|
354 |
logging.info(f"prepared default arguments:{args}.")
|
355 |
-
inference_fn = get_inference_model_by_args(args)
|
356 |
logging.info(f"prepared inference_fn function:{inference_fn.__name__}, creating gradio interface...")
|
357 |
-
io = get_gradio_interface(inference_fn)
|
358 |
logging.info("created gradio interface")
|
359 |
app = gr.mount_gradio_app(app, io, path=CUSTOM_GRADIO_PATH)
|
360 |
logging.info("mounted gradio app within fastapi")
|
|
|
|
|
1 |
import logging
|
2 |
import os
|
|
|
3 |
import sys
|
|
|
|
|
|
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
5 |
from fastapi import FastAPI
|
6 |
from fastapi.staticfiles import StaticFiles
|
7 |
from fastapi.templating import Jinja2Templates
|
|
|
8 |
|
9 |
+
from app import routes
|
10 |
+
from utils import app_helpers, session_logger
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
session_logger.change_logging(logging.DEBUG)
|
14 |
|
15 |
CUSTOM_GRADIO_PATH = "/"
|
16 |
app = FastAPI(title="lisa_app", version="1.0")
|
17 |
+
app.include_router(routes.router)
|
18 |
|
19 |
FASTAPI_STATIC = os.getenv("FASTAPI_STATIC")
|
20 |
os.makedirs(FASTAPI_STATIC, exist_ok=True)
|
21 |
app.mount("/static", StaticFiles(directory=FASTAPI_STATIC), name="static")
|
22 |
templates = Jinja2Templates(directory="templates")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
logging.info(f"sys.argv:{sys.argv}.")
|
26 |
+
args = app_helpers.parse_args([])
|
27 |
logging.info(f"prepared default arguments:{args}.")
|
28 |
+
inference_fn = app_helpers.get_inference_model_by_args(args)
|
29 |
logging.info(f"prepared inference_fn function:{inference_fn.__name__}, creating gradio interface...")
|
30 |
+
io = app_helpers.get_gradio_interface(inference_fn)
|
31 |
logging.info("created gradio interface")
|
32 |
app = gr.mount_gradio_app(app, io, path=CUSTOM_GRADIO_PATH)
|
33 |
logging.info("mounted gradio app within fastapi")
|
app/routes.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
from fastapi import APIRouter
|
4 |
+
|
5 |
+
from utils import session_logger
|
6 |
+
|
7 |
+
|
8 |
+
router = APIRouter()
|
9 |
+
|
10 |
+
|
11 |
+
@router.get("/health")
|
12 |
+
@session_logger.set_uuid_logging
|
13 |
+
def health() -> str:
|
14 |
+
try:
|
15 |
+
logging.info("health check")
|
16 |
+
return json.dumps({"msg": "ok"})
|
17 |
+
except Exception as e:
|
18 |
+
logging.error(f"exception:{e}.")
|
19 |
+
return json.dumps({"msg": "request failed"})
|
utils/app_helpers.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
from typing import Callable
|
6 |
+
import cv2
|
7 |
+
import gradio as gr
|
8 |
+
import nh3
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor
|
13 |
+
|
14 |
+
from . import constants, session_logger, utils
|
15 |
+
from model.LISA import LISAForCausalLM
|
16 |
+
from model.llava import conversation as conversation_lib
|
17 |
+
from model.llava.mm_utils import tokenizer_image_token
|
18 |
+
from model.segment_anything.utils.transforms import ResizeLongestSide
|
19 |
+
|
20 |
+
|
21 |
+
placeholders = utils.create_placeholder_variables()
|
22 |
+
|
23 |
+
|
24 |
+
@session_logger.set_uuid_logging
|
25 |
+
def parse_args(args_to_parse):
|
26 |
+
parser = argparse.ArgumentParser(description="LISA chat")
|
27 |
+
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1-explanatory")
|
28 |
+
parser.add_argument("--vis_save_path", default="./vis_output", type=str)
|
29 |
+
parser.add_argument(
|
30 |
+
"--precision",
|
31 |
+
default="fp16",
|
32 |
+
type=str,
|
33 |
+
choices=["fp32", "bf16", "fp16"],
|
34 |
+
help="precision for inference",
|
35 |
+
)
|
36 |
+
parser.add_argument("--image_size", default=1024, type=int, help="image size")
|
37 |
+
parser.add_argument("--model_max_length", default=512, type=int)
|
38 |
+
parser.add_argument("--lora_r", default=8, type=int)
|
39 |
+
parser.add_argument(
|
40 |
+
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
|
41 |
+
)
|
42 |
+
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
|
43 |
+
parser.add_argument("--load_in_8bit", action="store_true", default=False)
|
44 |
+
parser.add_argument("--load_in_4bit", action="store_true", default=True)
|
45 |
+
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
|
46 |
+
parser.add_argument(
|
47 |
+
"--conv_type",
|
48 |
+
default="llava_v1",
|
49 |
+
type=str,
|
50 |
+
choices=["llava_v1", "llava_llama_2"],
|
51 |
+
)
|
52 |
+
return parser.parse_args(args_to_parse)
|
53 |
+
|
54 |
+
|
55 |
+
@session_logger.set_uuid_logging
|
56 |
+
def get_cleaned_input(input_str):
|
57 |
+
logging.info(f"start cleaning of input_str: {input_str}.")
|
58 |
+
input_str = nh3.clean(
|
59 |
+
input_str,
|
60 |
+
tags={
|
61 |
+
"a",
|
62 |
+
"abbr",
|
63 |
+
"acronym",
|
64 |
+
"b",
|
65 |
+
"blockquote",
|
66 |
+
"code",
|
67 |
+
"em",
|
68 |
+
"i",
|
69 |
+
"li",
|
70 |
+
"ol",
|
71 |
+
"strong",
|
72 |
+
"ul",
|
73 |
+
},
|
74 |
+
attributes={
|
75 |
+
"a": {"href", "title"},
|
76 |
+
"abbr": {"title"},
|
77 |
+
"acronym": {"title"},
|
78 |
+
},
|
79 |
+
url_schemes={"http", "https", "mailto"},
|
80 |
+
link_rel=None,
|
81 |
+
)
|
82 |
+
logging.info(f"cleaned input_str: {input_str}.")
|
83 |
+
return input_str
|
84 |
+
|
85 |
+
|
86 |
+
@session_logger.set_uuid_logging
|
87 |
+
def set_image_precision_by_args(input_image, precision):
|
88 |
+
if precision == "bf16":
|
89 |
+
input_image = input_image.bfloat16()
|
90 |
+
elif precision == "fp16":
|
91 |
+
input_image = input_image.half()
|
92 |
+
else:
|
93 |
+
input_image = input_image.float()
|
94 |
+
return input_image
|
95 |
+
|
96 |
+
|
97 |
+
@session_logger.set_uuid_logging
|
98 |
+
def preprocess(
|
99 |
+
x,
|
100 |
+
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
|
101 |
+
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
|
102 |
+
img_size=1024,
|
103 |
+
) -> torch.Tensor:
|
104 |
+
"""Normalize pixel values and pad to a square input."""
|
105 |
+
logging.info("preprocess started")
|
106 |
+
# Normalize colors
|
107 |
+
x = (x - pixel_mean) / pixel_std
|
108 |
+
# Pad
|
109 |
+
h, w = x.shape[-2:]
|
110 |
+
padh = img_size - h
|
111 |
+
padw = img_size - w
|
112 |
+
x = F.pad(x, (0, padw, 0, padh))
|
113 |
+
logging.info("preprocess ended")
|
114 |
+
return x
|
115 |
+
|
116 |
+
|
117 |
+
@session_logger.set_uuid_logging
|
118 |
+
def get_model(args_to_parse):
|
119 |
+
logging.info("starting model preparation...")
|
120 |
+
os.makedirs(args_to_parse.vis_save_path, exist_ok=True)
|
121 |
+
|
122 |
+
# global tokenizer, tokenizer
|
123 |
+
# Create model
|
124 |
+
_tokenizer = AutoTokenizer.from_pretrained(
|
125 |
+
args_to_parse.version,
|
126 |
+
cache_dir=None,
|
127 |
+
model_max_length=args_to_parse.model_max_length,
|
128 |
+
padding_side="right",
|
129 |
+
use_fast=False,
|
130 |
+
)
|
131 |
+
_tokenizer.pad_token = _tokenizer.unk_token
|
132 |
+
args_to_parse.seg_token_idx = _tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
|
133 |
+
torch_dtype = torch.float32
|
134 |
+
if args_to_parse.precision == "bf16":
|
135 |
+
torch_dtype = torch.bfloat16
|
136 |
+
elif args_to_parse.precision == "fp16":
|
137 |
+
torch_dtype = torch.half
|
138 |
+
kwargs = {"torch_dtype": torch_dtype}
|
139 |
+
if args_to_parse.load_in_4bit:
|
140 |
+
kwargs.update(
|
141 |
+
{
|
142 |
+
"torch_dtype": torch.half,
|
143 |
+
"load_in_4bit": True,
|
144 |
+
"quantization_config": BitsAndBytesConfig(
|
145 |
+
load_in_4bit=True,
|
146 |
+
bnb_4bit_compute_dtype=torch.float16,
|
147 |
+
bnb_4bit_use_double_quant=True,
|
148 |
+
bnb_4bit_quant_type="nf4",
|
149 |
+
llm_int8_skip_modules=["visual_model"],
|
150 |
+
),
|
151 |
+
}
|
152 |
+
)
|
153 |
+
elif args_to_parse.load_in_8bit:
|
154 |
+
kwargs.update(
|
155 |
+
{
|
156 |
+
"torch_dtype": torch.half,
|
157 |
+
"quantization_config": BitsAndBytesConfig(
|
158 |
+
llm_int8_skip_modules=["visual_model"],
|
159 |
+
load_in_8bit=True,
|
160 |
+
),
|
161 |
+
}
|
162 |
+
)
|
163 |
+
_model = LISAForCausalLM.from_pretrained(
|
164 |
+
args_to_parse.version, low_cpu_mem_usage=True, vision_tower=args_to_parse.vision_tower, seg_token_idx=args_to_parse.seg_token_idx, **kwargs
|
165 |
+
)
|
166 |
+
_model.config.eos_token_id = _tokenizer.eos_token_id
|
167 |
+
_model.config.bos_token_id = _tokenizer.bos_token_id
|
168 |
+
_model.config.pad_token_id = _tokenizer.pad_token_id
|
169 |
+
_model.get_model().initialize_vision_modules(_model.get_model().config)
|
170 |
+
vision_tower = _model.get_model().get_vision_tower()
|
171 |
+
vision_tower.to(dtype=torch_dtype)
|
172 |
+
if args_to_parse.precision == "bf16":
|
173 |
+
_model = _model.bfloat16().cuda()
|
174 |
+
elif (
|
175 |
+
args_to_parse.precision == "fp16" and (not args_to_parse.load_in_4bit) and (not args_to_parse.load_in_8bit)
|
176 |
+
):
|
177 |
+
vision_tower = _model.get_model().get_vision_tower()
|
178 |
+
_model.model.vision_tower = None
|
179 |
+
import deepspeed
|
180 |
+
|
181 |
+
model_engine = deepspeed.init_inference(
|
182 |
+
model=_model,
|
183 |
+
dtype=torch.half,
|
184 |
+
replace_with_kernel_inject=True,
|
185 |
+
replace_method="auto",
|
186 |
+
)
|
187 |
+
_model = model_engine.module
|
188 |
+
_model.model.vision_tower = vision_tower.half().cuda()
|
189 |
+
elif args_to_parse.precision == "fp32":
|
190 |
+
_model = _model.float().cuda()
|
191 |
+
vision_tower = _model.get_model().get_vision_tower()
|
192 |
+
vision_tower.to(device=args_to_parse.local_rank)
|
193 |
+
_clip_image_processor = CLIPImageProcessor.from_pretrained(_model.config.vision_tower)
|
194 |
+
_transform = ResizeLongestSide(args_to_parse.image_size)
|
195 |
+
_model.eval()
|
196 |
+
logging.info("model preparation ok!")
|
197 |
+
return _model, _clip_image_processor, _tokenizer, _transform
|
198 |
+
|
199 |
+
|
200 |
+
@session_logger.set_uuid_logging
|
201 |
+
def get_inference_model_by_args(args_to_parse):
|
202 |
+
logging.info(f"args_to_parse:{args_to_parse}, creating model...")
|
203 |
+
model, clip_image_processor, tokenizer, transform = get_model(args_to_parse)
|
204 |
+
logging.info("created model, preparing inference function")
|
205 |
+
no_seg_out, error_happened = placeholders["no_seg_out"], placeholders["error_happened"]
|
206 |
+
|
207 |
+
@session_logger.set_uuid_logging
|
208 |
+
def inference(input_str, input_image):
|
209 |
+
## filter out special chars
|
210 |
+
|
211 |
+
input_str = get_cleaned_input(input_str)
|
212 |
+
logging.info(f"input_str type: {type(input_str)}, input_image type: {type(input_image)}.")
|
213 |
+
logging.info(f"input_str: {input_str}.")
|
214 |
+
|
215 |
+
## input valid check
|
216 |
+
if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
|
217 |
+
output_str = "[Error] Invalid input: ", input_str
|
218 |
+
return error_happened, output_str
|
219 |
+
|
220 |
+
# Model Inference
|
221 |
+
conv = conversation_lib.conv_templates[args_to_parse.conv_type].copy()
|
222 |
+
conv.messages = []
|
223 |
+
|
224 |
+
prompt = input_str
|
225 |
+
prompt = utils.DEFAULT_IMAGE_TOKEN + "\n" + prompt
|
226 |
+
if args_to_parse.use_mm_start_end:
|
227 |
+
replace_token = (
|
228 |
+
utils.DEFAULT_IM_START_TOKEN + utils.DEFAULT_IMAGE_TOKEN + utils.DEFAULT_IM_END_TOKEN
|
229 |
+
)
|
230 |
+
prompt = prompt.replace(utils.DEFAULT_IMAGE_TOKEN, replace_token)
|
231 |
+
|
232 |
+
conv.append_message(conv.roles[0], prompt)
|
233 |
+
conv.append_message(conv.roles[1], "")
|
234 |
+
prompt = conv.get_prompt()
|
235 |
+
|
236 |
+
image_np = cv2.imread(input_image)
|
237 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
238 |
+
original_size_list = [image_np.shape[:2]]
|
239 |
+
|
240 |
+
image_clip = (
|
241 |
+
clip_image_processor.preprocess(image_np, return_tensors="pt")[
|
242 |
+
"pixel_values"
|
243 |
+
][0]
|
244 |
+
.unsqueeze(0)
|
245 |
+
.cuda()
|
246 |
+
)
|
247 |
+
logging.info(f"image_clip type: {type(image_clip)}.")
|
248 |
+
image_clip = set_image_precision_by_args(image_clip, args_to_parse.precision)
|
249 |
+
|
250 |
+
image = transform.apply_image(image_np)
|
251 |
+
resize_list = [image.shape[:2]]
|
252 |
+
|
253 |
+
image = (
|
254 |
+
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
|
255 |
+
.unsqueeze(0)
|
256 |
+
.cuda()
|
257 |
+
)
|
258 |
+
logging.info(f"image_clip type: {type(image_clip)}.")
|
259 |
+
image = set_image_precision_by_args(image, args_to_parse.precision)
|
260 |
+
|
261 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
|
262 |
+
input_ids = input_ids.unsqueeze(0).cuda()
|
263 |
+
|
264 |
+
output_ids, pred_masks = model.evaluate(
|
265 |
+
image_clip,
|
266 |
+
image,
|
267 |
+
input_ids,
|
268 |
+
resize_list,
|
269 |
+
original_size_list,
|
270 |
+
max_new_tokens=512,
|
271 |
+
tokenizer=tokenizer,
|
272 |
+
)
|
273 |
+
output_ids = output_ids[0][output_ids[0] != utils.IMAGE_TOKEN_INDEX]
|
274 |
+
|
275 |
+
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
|
276 |
+
text_output = text_output.replace("\n", "").replace(" ", " ")
|
277 |
+
text_output = text_output.split("ASSISTANT: ")[-1]
|
278 |
+
|
279 |
+
logging.info(f"text_output type: {type(text_output)}, text_output: {text_output}.")
|
280 |
+
save_img = None
|
281 |
+
for i, pred_mask in enumerate(pred_masks):
|
282 |
+
if pred_mask.shape[0] == 0:
|
283 |
+
continue
|
284 |
+
|
285 |
+
pred_mask = pred_mask.detach().cpu().numpy()[0]
|
286 |
+
pred_mask = pred_mask > 0
|
287 |
+
|
288 |
+
save_img = image_np.copy()
|
289 |
+
save_img[pred_mask] = (
|
290 |
+
image_np * 0.5
|
291 |
+
+ pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
|
292 |
+
)[pred_mask]
|
293 |
+
|
294 |
+
output_str = f"ASSISTANT: {text_output}"
|
295 |
+
output_image = no_seg_out if save_img is None else save_img
|
296 |
+
logging.info(f"output_image type: {type(output_image)}.")
|
297 |
+
return output_image, output_str
|
298 |
+
|
299 |
+
logging.info("prepared inference function!")
|
300 |
+
return inference
|
301 |
+
|
302 |
+
|
303 |
+
@session_logger.set_uuid_logging
|
304 |
+
def get_gradio_interface(
|
305 |
+
fn_inference: Callable
|
306 |
+
):
|
307 |
+
return gr.Interface(
|
308 |
+
fn_inference,
|
309 |
+
inputs=[
|
310 |
+
gr.Textbox(lines=1, placeholder=None, label="Text Instruction"),
|
311 |
+
gr.Image(type="filepath", label="Input Image")
|
312 |
+
],
|
313 |
+
outputs=[
|
314 |
+
gr.Image(type="pil", label="Segmentation Output"),
|
315 |
+
gr.Textbox(lines=1, placeholder=None, label="Text Output")
|
316 |
+
],
|
317 |
+
title=constants.title,
|
318 |
+
description=constants.description,
|
319 |
+
article=constants.article,
|
320 |
+
examples=constants.examples,
|
321 |
+
allow_flagging="auto"
|
322 |
+
)
|