ai-pronunciation-trainer / WordMatching.py
alessandro trinca tornidor
doc: add/update docstring and typing hints
0700cb3
raw
history blame contribute delete
10.4 kB
import time
from string import punctuation
from typing import List, Tuple
import numpy as np
from dtwalign import dtw_from_distance_matrix
from ortools.sat.python import cp_model
import WordMetrics
from constants import app_logger
offset_blank = 1
TIME_THRESHOLD_MAPPING = 5.0
def get_word_distance_matrix(words_estimated: list, words_real: list) -> np.ndarray:
"""
Calculate the word distance matrix using Levenshtein distance.
Args:
words_estimated (list): List of estimated words.
words_real (list): List of real words.
Returns:
np.ndarray: The word distance matrix.
"""
number_of_real_words = len(words_real)
number_of_estimated_words = len(words_estimated)
word_distance_matrix = np.zeros(
(number_of_estimated_words + offset_blank, number_of_real_words))
for idx_estimated in range(number_of_estimated_words):
for idx_real in range(number_of_real_words):
word_distance_matrix[idx_estimated, idx_real] = WordMetrics.edit_distance_python(
words_estimated[idx_estimated], words_real[idx_real])
if offset_blank == 1:
for idx_real in range(number_of_real_words):
word_distance_matrix[number_of_estimated_words,
idx_real] = len(words_real[idx_real])
return word_distance_matrix
def get_best_path_from_distance_matrix(word_distance_matrix):
"""
Get the best path from the word distance matrix using constraint programming.
Args:
word_distance_matrix (np.ndarray): The word distance matrix.
Returns:
np.ndarray: The best path indices.
"""
modelCpp = cp_model.CpModel()
number_of_real_words = word_distance_matrix.shape[1]
number_of_estimated_words = word_distance_matrix.shape[0] - 1
number_words = np.maximum(number_of_real_words, number_of_estimated_words)
estimated_words_order = [modelCpp.NewIntVar(0, int(
number_words - 1 + offset_blank), 'w%i' % i) for i in range(number_words + offset_blank)]
# They are in ascending order
for word_idx in range(number_words - 1):
modelCpp.Add(
estimated_words_order[word_idx + 1] >= estimated_words_order[word_idx])
total_phoneme_distance = 0
real_word_at_time = {}
for idx_estimated in range(number_of_estimated_words):
for idx_real in range(number_of_real_words):
real_word_at_time[idx_estimated, idx_real] = modelCpp.NewBoolVar(
'real_word_at_time' + str(idx_real) + '-' + str(idx_estimated))
modelCpp.Add(estimated_words_order[idx_estimated] == idx_real).OnlyEnforceIf(
real_word_at_time[idx_estimated, idx_real])
total_phoneme_distance += word_distance_matrix[idx_estimated,
idx_real] * real_word_at_time[idx_estimated, idx_real]
# If no word in time, difference is calculated from empty string
for idx_real in range(number_of_real_words):
word_has_a_match = modelCpp.NewBoolVar(
'word_has_a_match' + str(idx_real))
modelCpp.Add(sum([real_word_at_time[idx_estimated, idx_real] for idx_estimated in range(
number_of_estimated_words)]) == 1).OnlyEnforceIf(word_has_a_match)
total_phoneme_distance += word_distance_matrix[number_of_estimated_words,
idx_real] * word_has_a_match.Not()
# Loss should be minimized
modelCpp.Minimize(total_phoneme_distance)
solver = cp_model.CpSolver()
solver.parameters.max_time_in_seconds = TIME_THRESHOLD_MAPPING
status = solver.Solve(modelCpp)
mapped_indices = []
try:
for word_idx in range(number_words):
mapped_indices.append(
(solver.Value(estimated_words_order[word_idx])))
return np.array(mapped_indices, dtype=int)
except:
return []
def get_resulting_string(mapped_indices: np.ndarray, words_estimated: list, words_real: list) -> Tuple[List, List]:
"""
Get the resulting string and indices from the mapped indices.
Args:
mapped_indices (np.ndarray): The mapped indices.
words_estimated (list): List of estimated words.
words_real (list): List of real words.
Returns:
Tuple[List, List]: The mapped words and their indices.
"""
mapped_words = []
mapped_words_indices = []
WORD_NOT_FOUND_TOKEN = '-'
number_of_real_words = len(words_real)
for word_idx in range(number_of_real_words):
position_of_real_word_indices = np.where(
mapped_indices == word_idx)[0].astype(int)
if len(position_of_real_word_indices) == 0:
mapped_words.append(WORD_NOT_FOUND_TOKEN)
mapped_words_indices.append(-1)
continue
if len(position_of_real_word_indices) == 1:
mapped_words.append(
words_estimated[position_of_real_word_indices[0]])
mapped_words_indices.append(position_of_real_word_indices[0])
continue
# Check which index gives the lowest error
if len(position_of_real_word_indices) > 1:
error = 99999
best_possible_combination = ''
best_possible_idx = -1
for single_word_idx in position_of_real_word_indices:
idx_above_word = single_word_idx >= len(words_estimated)
if idx_above_word:
continue
error_word = WordMetrics.edit_distance_python(
words_estimated[single_word_idx], words_real[word_idx])
if error_word < error:
error = error_word * 1
best_possible_combination = words_estimated[single_word_idx]
best_possible_idx = single_word_idx
mapped_words.append(best_possible_combination)
mapped_words_indices.append(best_possible_idx)
continue
return mapped_words, mapped_words_indices
def get_best_mapped_words(words_estimated: list | str, words_real: list | str, use_dtw:bool = False) -> tuple[list, list]:
"""
Get the best mapped words using either DTW or constraint programming.
Args:
words_estimated (list | str): List of estimated words or a single estimated word.
words_real (list | str): List of real words or a single real word.
use_dtw (bool, optional): Whether to use DTW for mapping. Defaults to False.
Returns:
tuple[list, list]: The mapped words and their indices.
"""
app_logger.info(f"words_estimated: '{words_estimated}', words_real: '{words_real}', use_dtw:{use_dtw}.")
word_distance_matrix = get_word_distance_matrix(
words_estimated, words_real)
app_logger.debug(f"word_distance_matrix: '{word_distance_matrix}'.")
start = time.time()
app_logger.info(f"use_dtw: '{use_dtw}'.")
if use_dtw:
alignment = (dtw_from_distance_matrix(word_distance_matrix.T))
app_logger.debug(f"alignment: '{alignment}'.")
mapped_indices = alignment.get_warping_path()[:len(words_estimated)]
app_logger.debug(f"mapped_indices: '{mapped_indices}'.")
duration_of_mapping = time.time()-start
else:
mapped_indices = get_best_path_from_distance_matrix(word_distance_matrix)
app_logger.debug(f"mapped_indices: '{mapped_indices}'.")
duration_of_mapping = time.time()-start
# In case or-tools doesn't converge, go to a faster, low-quality solution
check_mapped_indices_or_duration = len(mapped_indices) == 0 or duration_of_mapping > TIME_THRESHOLD_MAPPING+0.5
app_logger.info(f"check_mapped_indices_or_duration: '{check_mapped_indices_or_duration}'.")
if check_mapped_indices_or_duration:
#mapped_indices = (dtw_from_distance_matrix(
# word_distance_matrix)).path[:len(words_estimated), 1]
word_distance_matrix_transposed = word_distance_matrix.T
app_logger.debug(f"word_distance_matrix_transposed: '{word_distance_matrix_transposed}'.")
alignment = dtw_from_distance_matrix(word_distance_matrix_transposed)
app_logger.debug(f"check_mapped_indices_or_duration, alignment: '{alignment}'.")
mapped_indices = alignment.get_warping_path()
app_logger.debug(f"check_mapped_indices_or_duration, mapped_indices: '{mapped_indices}'.")
mapped_words, mapped_words_indices = get_resulting_string(mapped_indices, words_estimated, words_real)
app_logger.debug(f"mapped_words: '{mapped_words}', mapped_words_indices: '{mapped_words_indices}', duration_of_mapping:{duration_of_mapping}.")
return mapped_words, mapped_words_indices
## Faster, but not optimal
# def get_best_mapped_words_dtw(words_estimated: list, words_real: list) -> list:
# from dtwalign import dtw_from_distance_matrix
# word_distance_matrix = get_word_distance_matrix(
# words_estimated, words_real)
# mapped_indices = dtw_from_distance_matrix(
# word_distance_matrix).path[:-1, 0]
#
# mapped_words, mapped_words_indices = get_resulting_string(
# mapped_indices, words_estimated, words_real)
# return mapped_words, mapped_words_indices
def getWhichLettersWereTranscribedCorrectly(real_word: str, transcribed_word: list) -> list:
"""
Determine which letters were transcribed correctly.
Args:
real_word (str): The real word.
transcribed_word (str): The transcribed word.
Returns:
list: A list indicating whether each letter was transcribed correctly (1 for correct, 0 for incorrect).
"""
is_leter_correct = [None] * len(real_word)
for idx, letter in enumerate(real_word):
letter = letter.lower()
transcribed_word[idx] = transcribed_word[idx].lower()
if letter == transcribed_word[idx] or letter in punctuation:
is_leter_correct[idx] = 1
else:
is_leter_correct[idx] = 0
return is_leter_correct
# def parseLetterErrorsToHTML(word_real, is_leter_correct):
# word_colored = ''
# correct_color_start = '*'
# correct_color_end = '*'
# wrong_color_start = '-'
# wrong_color_end = '-'
# for idx, letter in enumerate(word_real):
# if is_leter_correct[idx] == 1:
# word_colored += correct_color_start + letter + correct_color_end
# else:
# word_colored += wrong_color_start + letter + wrong_color_end
# return word_colored