Spaces:
Running
Running
import base64 | |
import io | |
import logging | |
from typing import List | |
import os | |
import sys | |
import numpy as np | |
import gradio as gr | |
# Import các module cần thiết | |
try: | |
import torch | |
import torchaudio | |
HAS_TORCH = True | |
except ImportError: | |
HAS_TORCH = False | |
logging.warning("PyTorch not available. Using mock generator.") | |
# Tạo lớp Mock để sử dụng khi không có PyTorch hoặc model bị lỗi | |
class MockGenerator: | |
def __init__(self): | |
self.sample_rate = 24000 | |
logging.info("Created mock generator with sample rate 24000") | |
def generate(self, text, speaker, context=None, max_audio_length_ms=10000, temperature=0.9, topk=50): | |
# Tạo âm thanh giả - chỉ là silence với độ dài tỷ lệ với text | |
duration_seconds = min(len(text) * 0.1, max_audio_length_ms / 1000) | |
samples = int(duration_seconds * self.sample_rate) | |
logging.info(f"Generating mock audio with {samples} samples") | |
return np.zeros(samples, dtype=np.float32) | |
# Định nghĩa lớp Segment giả khi cần | |
class MockSegment: | |
def __init__(self, text, speaker, audio=None): | |
self.text = text | |
self.speaker = speaker | |
self.audio = audio if audio is not None else np.zeros(0, dtype=np.float32) | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
generator = None | |
def initialize_model(): | |
global generator | |
logger.info("Loading CSM 1B model...") | |
# Nếu không có PyTorch, sử dụng mock | |
if not HAS_TORCH: | |
logger.warning("PyTorch not available. Using mock generator.") | |
generator = MockGenerator() | |
return True | |
# Có PyTorch, thử tải model thật | |
try: | |
# Kiểm tra và tải các thư viện cần thiết | |
import sys | |
# Thêm thư mục hiện tại vào PATH để đảm bảo import được các module cần thiết | |
if os.getcwd() not in sys.path: | |
sys.path.append(os.getcwd()) | |
# Thử import từ generator module (theo hướng dẫn chính thức) | |
try: | |
from generator import load_csm_1b, Segment | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if device == "cpu": | |
logger.warning("GPU not available. Using CPU, performance may be slow!") | |
logger.info(f"Using device: {device}") | |
# Tải model theo cách chính thức | |
generator = load_csm_1b(device=device) | |
logger.info(f"Model loaded successfully on device: {device}") | |
return True | |
except Exception as e: | |
logger.error(f"Error loading model: {str(e)}") | |
# Tải mock generator trong trường hợp lỗi | |
logger.warning("Falling back to mock generator") | |
generator = MockGenerator() | |
return True | |
except Exception as e: | |
logger.error(f"Critical error: {str(e)}") | |
generator = MockGenerator() | |
return True | |
def generate_speech(text, speaker_id, max_audio_length_ms=10000, temperature=0.9, topk=50, context_texts=None, context_speakers=None): | |
global generator | |
if generator is None: | |
if not initialize_model(): | |
# Sử dụng mock generator nếu không khởi tạo được | |
generator = MockGenerator() | |
try: | |
# Xác định Segment class để sử dụng | |
try: | |
from generator import Segment | |
except ImportError: | |
Segment = MockSegment | |
# Xử lý context nếu có | |
context_segments = [] | |
if context_texts and context_speakers: | |
for ctx_text, ctx_speaker in zip(context_texts, context_speakers): | |
if ctx_text and ctx_speaker is not None: | |
# Tạo audio tensor rỗng cho context | |
if HAS_TORCH: | |
audio_tensor = torch.zeros(0, dtype=torch.float32) | |
else: | |
audio_tensor = np.zeros(0, dtype=np.float32) | |
context_segments.append( | |
Segment(text=ctx_text, speaker=int(ctx_speaker), audio=audio_tensor) | |
) | |
# Generate audio từ text | |
audio = generator.generate( | |
text=text, | |
speaker=int(speaker_id), | |
context=context_segments, | |
max_audio_length_ms=float(max_audio_length_ms), | |
temperature=float(temperature), | |
topk=int(topk), | |
) | |
# Chuyển đổi tensor sang numpy array cho Gradio | |
if HAS_TORCH and isinstance(audio, torch.Tensor): | |
audio_numpy = audio.cpu().numpy() | |
else: | |
audio_numpy = audio # Đã là numpy từ MockGenerator | |
sample_rate = generator.sample_rate | |
return (sample_rate, audio_numpy), None | |
except Exception as e: | |
logger.error(f"Error generating audio: {str(e)}") | |
# Sử dụng mock generator trong trường hợp lỗi | |
mock_gen = MockGenerator() | |
audio = mock_gen.generate(text=text, speaker=int(speaker_id), max_audio_length_ms=float(max_audio_length_ms)) | |
return (mock_gen.sample_rate, audio), f"Error generating audio, using silent audio: {str(e)}" | |
def clear_context(): | |
return [], [] | |
def add_context(text, speaker_id, context_texts, context_speakers): | |
if text and speaker_id is not None: | |
context_texts.append(text) | |
context_speakers.append(int(speaker_id)) | |
return context_texts, context_speakers | |
def update_context_display(texts, speakers): | |
if not texts or not speakers: | |
return [] | |
return [[text, speaker] for text, speaker in zip(texts, speakers)] | |
def create_demo(): | |
# Set up Gradio interface | |
demo = gr.Blocks(title="CSM 1B Demo") | |
with demo: | |
gr.Markdown("# CSM 1B - Conversational Speech Model") | |
gr.Markdown("Enter text to generate natural-sounding speech with the CSM 1B model") | |
if not HAS_TORCH: | |
gr.Markdown("⚠️ **WARNING: PyTorch is not available. Using a mock generator that produces silent audio.**") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
text_input = gr.Textbox( | |
label="Text to convert to speech", | |
placeholder="Enter your text here...", | |
lines=3 | |
) | |
speaker_id = gr.Slider( | |
label="Speaker ID", | |
minimum=0, | |
maximum=10, | |
step=1, | |
value=0 | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
max_length = gr.Slider( | |
label="Maximum length (milliseconds)", | |
minimum=1000, | |
maximum=30000, | |
step=1000, | |
value=10000 | |
) | |
temp = gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=1.5, | |
step=0.1, | |
value=0.9 | |
) | |
top_k = gr.Slider( | |
label="Top K", | |
minimum=10, | |
maximum=100, | |
step=10, | |
value=50 | |
) | |
with gr.Accordion("Conversation Context", open=False): | |
context_list = gr.State([]) | |
context_speakers_list = gr.State([]) | |
with gr.Row(): | |
context_text = gr.Textbox(label="Context text", lines=2) | |
context_speaker = gr.Slider( | |
label="Context speaker ID", | |
minimum=0, | |
maximum=10, | |
step=1, | |
value=0 | |
) | |
with gr.Row(): | |
add_ctx_btn = gr.Button("Add Context") | |
clear_ctx_btn = gr.Button("Clear All Context") | |
context_display = gr.Dataframe( | |
headers=["Text", "Speaker ID"], | |
label="Current Context", | |
interactive=False | |
) | |
generate_btn = gr.Button("Generate Audio", variant="primary") | |
with gr.Column(scale=1): | |
audio_output = gr.Audio(label="Generated Audio", type="numpy") | |
error_output = gr.Textbox(label="Error Message", visible=False) | |
# Connect events | |
generate_btn.click( | |
fn=generate_speech, | |
inputs=[ | |
text_input, | |
speaker_id, | |
max_length, | |
temp, | |
top_k, | |
context_list, | |
context_speakers_list | |
], | |
outputs=[audio_output, error_output] | |
) | |
add_ctx_btn.click( | |
fn=add_context, | |
inputs=[ | |
context_text, | |
context_speaker, | |
context_list, | |
context_speakers_list | |
], | |
outputs=[context_list, context_speakers_list] | |
).then( | |
fn=update_context_display, | |
inputs=[context_list, context_speakers_list], | |
outputs=[context_display] | |
) | |
clear_ctx_btn.click( | |
fn=clear_context, | |
inputs=[], | |
outputs=[context_list, context_speakers_list] | |
).then( | |
fn=lambda: [], | |
inputs=[], | |
outputs=[context_display] | |
) | |
gr.Markdown(""" | |
## About CSM-1B | |
CSM (Conversational Speech Model) is a speech generation model from Sesame that generates audio from text inputs. | |
The model can generate a variety of voices and works best when provided with conversational context. | |
### Features: | |
- Generate natural-sounding speech from text | |
- Choose different speaker identities (0-10) | |
- Adjust temperature to control output variability | |
- Add conversation context for more natural responses | |
[View on Hugging Face](https://huggingface.co/sesame/csm-1b) | [GitHub Repository](https://github.com/SesameAILabs/csm) | |
""") | |
return demo | |
# Khởi tạo model | |
initialize_model() | |
# Tạo và khởi chạy demo | |
demo = create_demo() | |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) | |