Spaces:
Running
Running
File size: 17,002 Bytes
6d75162 0f1518a 6d75162 633ab26 e02c9de a6403d5 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 a6403d5 6d75162 e02c9de 633ab26 a6403d5 e02c9de a6403d5 e02c9de 6d75162 e02c9de 633ab26 a6403d5 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 633ab26 6d75162 e02c9de 633ab26 6d75162 955241f 6d75162 e02c9de 633ab26 e02c9de 633ab26 e02c9de 0f1518a e02c9de 6d75162 e02c9de 633ab26 955241f e02c9de 633ab26 e02c9de 633ab26 e02c9de 633ab26 e02c9de 955241f e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 633ab26 6d75162 e02c9de 6d75162 633ab26 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 633ab26 6d75162 e02c9de 6d75162 633ab26 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de a6403d5 e02c9de 6d75162 633ab26 6d75162 e02c9de 6d75162 e02c9de 6d75162 e02c9de 6d75162 a6403d5 e02c9de a6403d5 633ab26 a6403d5 e02c9de a6403d5 e02c9de a6403d5 6d75162 e02c9de 6d75162 955241f 6d75162 633ab26 6d75162 955241f 6d75162 633ab26 6d75162 e02c9de 6d75162 ecd7f95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import os
import tempfile
import time
from typing import List, Tuple
import gradio as gr
import torch
import torchaudio
# import spaces
from dataclasses import dataclass
from generator import Segment, load_csm_1b
from huggingface_hub import login
# Disable torch compile feature to avoid triton error
torch._dynamo.config.suppress_errors = True
# Check if GPU is available and configure the device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Login to Hugging Face Hub if token is available
def login_huggingface():
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
print("Logging in to Hugging Face Hub...")
login(token=hf_token)
print("Login successful!")
else:
print("HF_TOKEN not found in environment variables. Some models may not be accessible.")
# Login at startup
login_huggingface()
# Global variables to track model state
generator = None
model_loaded = False
# Function to load model in ZeroGPU
# @spaces.GPU(duration=30)
def initialize_model():
global generator, model_loaded
if not model_loaded:
print("Loading CSM-1B model in GPU...")
generator = load_csm_1b(device="cuda")
model_loaded = True
print("Model loaded successfully!")
return generator
# Function to get the loaded model
# @spaces.GPU(duration=30)
def get_model():
global generator, model_loaded
if not model_loaded:
return initialize_model()
return generator
# Preload model if environment variable is set
def preload_model_if_needed():
if os.environ.get("PRELOAD_MODEL", "").lower() in ("true", "1", "yes"):
print("PRELOAD_MODEL is set. Attempting to preload model...")
try:
# We can't directly call initialize_model() here because it's decorated with @spaces.GPU
# Instead, we'll set a flag that will be checked when the first request comes in
global model_loaded
model_loaded = False
print("Model will be loaded on first request.")
except Exception as e:
print(f"Error during model preloading setup: {e}")
else:
print("PRELOAD_MODEL is not set. Model will be loaded on demand.")
# Call preload function at startup
preload_model_if_needed()
# Function to convert audio to tensor
def audio_to_tensor(audio_path: str) -> Tuple[torch.Tensor, int]:
waveform, sample_rate = torchaudio.load(audio_path)
waveform = waveform.mean(dim=0) # Convert stereo to mono if needed
return waveform, sample_rate
# Function to save audio tensor to file
def save_audio(audio_tensor: torch.Tensor, sample_rate: int) -> str:
# Lưu file vào thư mục hiện tại hoặc thư mục files mà Gradio mặc định sử dụng
output_path = f"csm1b_output_{int(time.time())}.wav"
torchaudio.save(output_path, audio_tensor.unsqueeze(0), sample_rate)
return output_path
# Function to generate speech from text using ZeroGPU
# @spaces.GPU(duration=30)
def generate_speech(
text: str,
speaker_id: int,
context_audio_path1: str = None,
context_text1: str = None,
context_speaker1: int = 0,
context_audio_path2: str = None,
context_text2: str = None,
context_speaker2: int = 1,
max_duration_ms: float = 30000,
temperature: float = 0.9,
top_k: int = 50,
progress=gr.Progress()
) -> str:
try:
# Get the loaded model
generator = get_model()
# Prepare context
context = []
progress(0.1, "Processing context...")
# Process context 1
if context_audio_path1 and context_text1:
waveform, sample_rate = audio_to_tensor(context_audio_path1)
# Resample if needed
if sample_rate != generator.sample_rate:
waveform = torchaudio.functional.resample(waveform, orig_freq=sample_rate, new_freq=generator.sample_rate)
context.append(Segment(speaker=context_speaker1, text=context_text1, audio=waveform))
# Process context 2
if context_audio_path2 and context_text2:
waveform, sample_rate = audio_to_tensor(context_audio_path2)
# Resample if needed
if sample_rate != generator.sample_rate:
waveform = torchaudio.functional.resample(waveform, orig_freq=sample_rate, new_freq=generator.sample_rate)
context.append(Segment(speaker=context_speaker2, text=context_text2, audio=waveform))
progress(0.3, "Generating audio...")
# Generate audio from text
audio = generator.generate(
text=text,
speaker=speaker_id,
context=context,
max_audio_length_ms=max_duration_ms,
# temperature=temperature,
# topk=top_k
)
progress(0.8, "Saving audio...")
# Save audio to file
# output_path = save_audio(audio, generator.sample_rate)
output_path = f"csm1b_output_{int(time.time())}.wav"
progress(1.0, "Completed!")
return output_path
except Exception as e:
# Handle ZeroGPU quota exceeded error
error_message = str(e)
if "GPU quota exceeded" in error_message:
# Extract wait time from error message
import re
wait_time_match = re.search(r"Try again in (\d+:\d+:\d+)", error_message)
wait_time = wait_time_match.group(1) if wait_time_match else "some time"
return f"GPU quota exceeded. Please try again in {wait_time}."
return f"GPU error: {error_message}"
except Exception as e:
return f"Error generating speech: {str(e)}"
# Function to generate simple speech without context
# @spaces.GPU(duration=30)
def generate_speech_simple(
text: str,
speaker_id: int,
max_duration_ms: float = 30000,
temperature: float = 0.9,
top_k: int = 50,
progress=gr.Progress()
) -> str:
try:
# Get the loaded model
generator = get_model()
progress(0.3, "Generating audio...")
# Generate audio from text
audio = generator.generate(
text=text,
speaker=speaker_id,
context=[], # No context
max_audio_length_ms=max_duration_ms,
# temperature=temperature,
# topk=top_k
)
progress(0.8, "Saving audio...")
# Save audio to file
# output_path = save_audio(audio, generator.sample_rate)
output_path = f"csm1b_output_{int(time.time())}.wav"
torchaudio.save(output_path, audio.unsqueeze(0).cpu(), generator.sample_rate)
print(f"Audio saved to {output_path}")
progress(1.0, "Completed!")
return output_path
except Exception as e:
# Handle ZeroGPU quota exceeded error
error_message = str(e)
if "GPU quota exceeded" in error_message:
# Extract wait time from error message
import re
wait_time_match = re.search(r"Try again in (\d+:\d+:\d+)", error_message)
wait_time = wait_time_match.group(1) if wait_time_match else "some time"
return f"GPU quota exceeded. Please try again in {wait_time}."
return f"GPU error: {error_message}"
except Exception as e:
return f"Error generating speech: {str(e)}"
# Create Gradio interface
def create_demo():
with gr.Blocks(title="CSM-1B Text-to-Speech") as demo:
gr.Markdown("# CSM-1B Text-to-Speech Demo")
gr.Markdown("CSM-1B (Collaborative Speech Model) is an advanced text-to-speech model capable of generating natural-sounding speech from text.")
with gr.Tab("Simple Audio Generation"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Text to convert to speech",
placeholder="Enter the text you want to convert to speech...",
lines=5
)
speaker_id = gr.Number(
label="Speaker ID",
value=0,
precision=0,
minimum=0,
maximum=10
)
with gr.Row():
max_duration = gr.Slider(
label="Maximum Duration (ms)",
minimum=1000,
maximum=90000,
value=30000,
step=1000
)
# temperature = gr.Slider(
# label="Temperature",
# minimum=0.1,
# maximum=1.5,
# value=0.9,
# step=0.1
# )
# top_k = gr.Slider(
# label="Top-K",
# minimum=1,
# maximum=100,
# value=50,
# step=1
# )
generate_btn = gr.Button("Generate Audio")
with gr.Column():
output_audio = gr.Audio(label="Output Audio", type="filepath", autoplay=True)
with gr.Tab("Audio Generation with Context"):
gr.Markdown("This feature allows you to provide audio clips and text as context to help the model generate more appropriate speech.")
with gr.Row():
with gr.Column():
context_text1 = gr.Textbox(label="Context Text 1", lines=2)
context_audio1 = gr.Audio(label="Context Audio 1", type="filepath")
context_speaker1 = gr.Number(label="Speaker ID 1", value=0, precision=0)
context_text2 = gr.Textbox(label="Context Text 2", lines=2)
context_audio2 = gr.Audio(label="Context Audio 2", type="filepath")
context_speaker2 = gr.Number(label="Speaker ID 2", value=1, precision=0)
text_input_context = gr.Textbox(
label="Text to convert to speech",
placeholder="Enter the text you want to convert to speech...",
lines=3
)
speaker_id_context = gr.Number(
label="Speaker ID",
value=0,
precision=0
)
with gr.Row():
max_duration_context = gr.Slider(
label="Maximum Duration (ms)",
minimum=1000,
maximum=90000,
value=30000,
step=1000
)
# temperature_context = gr.Slider(
# label="Temperature",
# minimum=0.1,
# maximum=1.5,
# value=0.9,
# step=0.1
# )
# top_k_context = gr.Slider(
# label="Top-K",
# minimum=1,
# maximum=100,
# value=50,
# step=1
# )
generate_context_btn = gr.Button("Generate Audio with Context")
with gr.Column():
output_audio_context = gr.Audio(label="Output Audio", type="filepath", autoplay=True)
# Add Hugging Face configuration tab
with gr.Tab("Configuration"):
gr.Markdown("### Hugging Face Token Configuration")
gr.Markdown("""
To use the CSM-1B model, you need access to the model on Hugging Face.
You can configure your token by:
1. Create a token at [Hugging Face Settings](https://huggingface.co/settings/tokens)
2. Set the `HF_TOKEN` environment variable with your token value
Note: In Hugging Face Spaces, you can set environment variables in the Space Settings.
""")
hf_token_input = gr.Textbox(
label="Hugging Face Token (Only for this session)",
placeholder="Enter your token...",
type="password"
)
def set_token(token):
if token:
os.environ["HF_TOKEN"] = token
login(token=token)
return "Token set successfully! You can now load the model."
return "Invalid token. Please enter a valid token."
set_token_btn = gr.Button("Set Token")
token_status = gr.Textbox(label="Status", interactive=False)
set_token_btn.click(fn=set_token, inputs=hf_token_input, outputs=token_status)
# Add GPU information tab
with gr.Tab("GPU Information"):
gr.Markdown("### About ZeroGPU")
gr.Markdown("""
This application uses Hugging Face Spaces' ZeroGPU to optimize GPU usage.
ZeroGPU helps free up GPU memory when not in use, saving resources and improving performance.
When you generate audio, the GPU will be used automatically and released after completion.
Note: In the ZeroGPU environment, CUDA is not initialized in the main process, but only in functions with the @spaces.GPU decorator.
""")
gr.Markdown("### GPU Quota Information")
gr.Markdown("""
Hugging Face Spaces has GPU quota limitations:
- Each GPU operation has a default duration of 60 seconds
- We've reduced this to 30 seconds for audio generation and 10 seconds for GPU checks
- If you exceed your quota, you'll need to wait for it to reset (usually a few hours)
- For better performance, try generating shorter audio clips
If you encounter a "GPU quota exceeded" error, please wait for the specified time and try again.
""")
# @spaces.GPU(duration=10)
def check_gpu():
if torch.cuda.is_available():
gpu_name = torch.cuda.get_device_name(0)
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
return f"GPU: {gpu_name}\nMemory: {gpu_memory:.2f} GB"
else:
return "No GPU found. The application will run on CPU."
check_gpu_btn = gr.Button("Check GPU")
gpu_info = gr.Textbox(label="GPU Information", interactive=False)
check_gpu_btn.click(fn=check_gpu, inputs=None, outputs=gpu_info)
# Add model loading button
load_model_btn = gr.Button("Load Model")
model_status = gr.Textbox(label="Model Status", interactive=False)
# @spaces.GPU(duration=10)
def load_model_and_report():
global model_loaded
if model_loaded:
return "Model has already been loaded!"
else:
initialize_model()
return "Model loaded successfully!"
load_model_btn.click(fn=load_model_and_report, inputs=None, outputs=model_status)
# Connect components
generate_btn.click(
fn=generate_speech_simple,
inputs=[
text_input,
speaker_id,
max_duration,
# temperature,
# top_k
],
outputs=output_audio
)
generate_context_btn.click(
fn=generate_speech,
inputs=[
text_input_context,
speaker_id_context,
context_audio1,
context_text1,
context_speaker1,
context_audio2,
context_text2,
context_speaker2,
max_duration_context,
# temperature_context,
# top_k_context
],
outputs=output_audio_context
)
return demo
# Launch the application
if __name__ == "__main__":
demo = create_demo()
demo.queue().launch() |