Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,36 @@
|
|
1 |
from transformers import Blip2Processor, Blip2ForConditionalGeneration, AutoModelForCausalLM, AutoTokenizer
|
2 |
-
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
3 |
import torch
|
4 |
from PIL import Image, ImageDraw, ImageFont
|
5 |
import gradio as gr
|
6 |
import os
|
|
|
|
|
7 |
os.makedirs("./offload", exist_ok=True)
|
8 |
-
|
9 |
|
|
|
|
|
|
|
10 |
torch.backends.cuda.matmul.allow_tf32 = True
|
11 |
torch.backends.cudnn.allow_tf32 = True
|
12 |
|
13 |
-
|
14 |
-
|
15 |
blip_model = Blip2ForConditionalGeneration.from_pretrained(
|
16 |
"Salesforce/blip2-opt-2.7b",
|
17 |
torch_dtype=torch.float16,
|
18 |
-
device_map="auto"
|
19 |
-
|
20 |
-
no_split_module_classes=["Blip2QFormerModel"]
|
21 |
-
)
|
22 |
|
23 |
-
#
|
24 |
phi_model = AutoModelForCausalLM.from_pretrained(
|
25 |
"microsoft/Phi-3-mini-4k-instruct",
|
26 |
trust_remote_code=True,
|
27 |
device_map="auto",
|
28 |
torch_dtype=torch.float16,
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
)
|
33 |
phi_tokenizer = AutoTokenizer.from_pretrained(
|
34 |
"microsoft/Phi-3-mini-4k-instruct",
|
35 |
token=HF_TOKEN
|
|
|
1 |
from transformers import Blip2Processor, Blip2ForConditionalGeneration, AutoModelForCausalLM, AutoTokenizer
|
|
|
2 |
import torch
|
3 |
from PIL import Image, ImageDraw, ImageFont
|
4 |
import gradio as gr
|
5 |
import os
|
6 |
+
|
7 |
+
# Initialize environment
|
8 |
os.makedirs("./offload", exist_ok=True)
|
9 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
10 |
|
11 |
+
# Memory optimization
|
12 |
+
torch.cuda.empty_cache()
|
13 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
14 |
torch.backends.cuda.matmul.allow_tf32 = True
|
15 |
torch.backends.cudnn.allow_tf32 = True
|
16 |
|
17 |
+
# Load BLIP-2
|
18 |
+
blip_processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
19 |
blip_model = Blip2ForConditionalGeneration.from_pretrained(
|
20 |
"Salesforce/blip2-opt-2.7b",
|
21 |
torch_dtype=torch.float16,
|
22 |
+
device_map="auto"
|
23 |
+
).eval()
|
|
|
|
|
24 |
|
25 |
+
# Load Phi-3
|
26 |
phi_model = AutoModelForCausalLM.from_pretrained(
|
27 |
"microsoft/Phi-3-mini-4k-instruct",
|
28 |
trust_remote_code=True,
|
29 |
device_map="auto",
|
30 |
torch_dtype=torch.float16,
|
31 |
+
load_in_4bit=True,
|
32 |
+
token=HF_TOKEN
|
33 |
+
).eval()
|
|
|
34 |
phi_tokenizer = AutoTokenizer.from_pretrained(
|
35 |
"microsoft/Phi-3-mini-4k-instruct",
|
36 |
token=HF_TOKEN
|