fix issue
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from fastapi import FastAPI, File, UploadFile, Response
|
2 |
-
from transformers import
|
3 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
4 |
from llama_cpp import Llama
|
5 |
import torch
|
@@ -10,74 +10,59 @@ from pydantic import BaseModel
|
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
-
# Load
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
tts_tokenizer = AutoTokenizer.from_pretrained(TTS_MODEL_PATH)
|
18 |
else:
|
19 |
-
tts_model =
|
20 |
-
tts_tokenizer = AutoTokenizer.from_pretrained("
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
sst_processor = Wav2Vec2Processor.from_pretrained(SST_MODEL_PATH)
|
27 |
else:
|
28 |
sst_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
29 |
-
sst_processor =
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
if os.path.exists(LLM_MODEL_PATH):
|
34 |
-
llm = Llama(model_path=LLM_MODEL_PATH) # Corrected usage
|
35 |
else:
|
36 |
raise FileNotFoundError("Please upload llama.gguf to models/ directory")
|
37 |
|
38 |
-
# Request models
|
39 |
class TTSRequest(BaseModel):
|
40 |
text: str
|
41 |
|
42 |
class LLMRequest(BaseModel):
|
43 |
prompt: str
|
44 |
|
45 |
-
# API Endpoints
|
46 |
@app.post("/tts")
|
47 |
async def tts_endpoint(request: TTSRequest):
|
48 |
text = request.text
|
49 |
inputs = tts_tokenizer(text, return_tensors="pt")
|
50 |
-
|
51 |
with torch.no_grad():
|
52 |
-
|
53 |
-
|
54 |
-
# Convert model output to speech (assuming Bark-like model)
|
55 |
-
audio = output_ids.squeeze().cpu().numpy()
|
56 |
-
|
57 |
buffer = io.BytesIO()
|
58 |
-
sf.write(buffer, audio,
|
59 |
buffer.seek(0)
|
60 |
-
|
61 |
return Response(content=buffer.getvalue(), media_type="audio/wav")
|
62 |
|
63 |
@app.post("/sst")
|
64 |
async def sst_endpoint(file: UploadFile = File(...)):
|
65 |
audio_bytes = await file.read()
|
66 |
audio, sr = sf.read(io.BytesIO(audio_bytes))
|
67 |
-
|
68 |
inputs = sst_processor(audio, sampling_rate=sr, return_tensors="pt")
|
69 |
-
|
70 |
with torch.no_grad():
|
71 |
-
logits = sst_model(inputs.input_values).logits
|
72 |
-
|
73 |
-
|
74 |
transcription = sst_processor.batch_decode(predicted_ids)[0]
|
75 |
-
|
76 |
return {"text": transcription}
|
77 |
|
78 |
@app.post("/llm")
|
79 |
async def llm_endpoint(request: LLMRequest):
|
80 |
prompt = request.prompt
|
81 |
-
output = llm(prompt, max_tokens=50)
|
82 |
-
|
83 |
-
return {"text": output["choices"][0]["text"] if "choices" in output else output["content"]}
|
|
|
1 |
from fastapi import FastAPI, File, UploadFile, Response
|
2 |
+
from transformers import ParlerTTSForConditionalGeneration, AutoTokenizer
|
3 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
4 |
from llama_cpp import Llama
|
5 |
import torch
|
|
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
+
# Load models
|
14 |
+
if os.path.exists("./models/tts_model"):
|
15 |
+
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("./models/tts_model")
|
16 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("./models/tts_model")
|
|
|
17 |
else:
|
18 |
+
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1")
|
19 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")
|
20 |
|
21 |
+
# SST and LLM loading remains unchanged
|
22 |
+
if os.path.exists("./models/sst_model"):
|
23 |
+
sst_model = Wav2Vec2ForCTC.from_pretrained("./models/sst_model")
|
24 |
+
sst_processor = Wav2Vec2Processor.from_pretrained("./models/sst_model")
|
|
|
25 |
else:
|
26 |
sst_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
27 |
+
sst_processor = Wav2Vec2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
28 |
|
29 |
+
if os.path.exists("./models/llama.gguf"):
|
30 |
+
llm = Llama("./models/llama.gguf")
|
|
|
|
|
31 |
else:
|
32 |
raise FileNotFoundError("Please upload llama.gguf to models/ directory")
|
33 |
|
34 |
+
# Request models and endpoints remain unchanged
|
35 |
class TTSRequest(BaseModel):
|
36 |
text: str
|
37 |
|
38 |
class LLMRequest(BaseModel):
|
39 |
prompt: str
|
40 |
|
|
|
41 |
@app.post("/tts")
|
42 |
async def tts_endpoint(request: TTSRequest):
|
43 |
text = request.text
|
44 |
inputs = tts_tokenizer(text, return_tensors="pt")
|
|
|
45 |
with torch.no_grad():
|
46 |
+
audio = tts_model.generate(**inputs)
|
47 |
+
audio = audio.squeeze().cpu().numpy()
|
|
|
|
|
|
|
48 |
buffer = io.BytesIO()
|
49 |
+
sf.write(buffer, audio, 22050, format="WAV")
|
50 |
buffer.seek(0)
|
|
|
51 |
return Response(content=buffer.getvalue(), media_type="audio/wav")
|
52 |
|
53 |
@app.post("/sst")
|
54 |
async def sst_endpoint(file: UploadFile = File(...)):
|
55 |
audio_bytes = await file.read()
|
56 |
audio, sr = sf.read(io.BytesIO(audio_bytes))
|
|
|
57 |
inputs = sst_processor(audio, sampling_rate=sr, return_tensors="pt")
|
|
|
58 |
with torch.no_grad():
|
59 |
+
logits = sst_model(inputs.input_values).logits
|
60 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
|
|
61 |
transcription = sst_processor.batch_decode(predicted_ids)[0]
|
|
|
62 |
return {"text": transcription}
|
63 |
|
64 |
@app.post("/llm")
|
65 |
async def llm_endpoint(request: LLMRequest):
|
66 |
prompt = request.prompt
|
67 |
+
output = llm(prompt, max_tokens=50)
|
68 |
+
return {"text": output["choices"][0]["text"]}
|
|