akshatOP commited on
Commit
4ae9dfe
·
1 Parent(s): 2f38e4a

Update app.py with fixed imports

Browse files
Files changed (1) hide show
  1. app.py +1 -4
app.py CHANGED
@@ -27,7 +27,7 @@ else:
27
  sst_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
28
  sst_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
29
 
30
- # LLM: Use local GGUF file if available, else raise error (must be uploaded)
31
  if os.path.exists("./models/llama.gguf"):
32
  llm = Llama("./models/llama.gguf")
33
  else:
@@ -43,7 +43,6 @@ class LLMRequest(BaseModel):
43
  # API Endpoints
44
  @app.post("/tts")
45
  async def tts_endpoint(request: TTSRequest):
46
- """Convert text to speech and return audio."""
47
  text = request.text
48
  inputs = tts_tokenizer(text, return_tensors="pt")
49
  with torch.no_grad():
@@ -56,7 +55,6 @@ async def tts_endpoint(request: TTSRequest):
56
 
57
  @app.post("/sst")
58
  async def sst_endpoint(file: UploadFile = File(...)):
59
- """Convert speech to text and return transcription."""
60
  audio_bytes = await file.read()
61
  audio, sr = sf.read(io.BytesIO(audio_bytes))
62
  inputs = sst_processor(audio, sampling_rate=sr, return_tensors="pt")
@@ -68,7 +66,6 @@ async def sst_endpoint(file: UploadFile = File(...)):
68
 
69
  @app.post("/llm")
70
  async def llm_endpoint(request: LLMRequest):
71
- """Generate text from a prompt using Llama.cpp."""
72
  prompt = request.prompt
73
  output = llm(prompt, max_tokens=50)
74
  return {"text": output["choices"][0]["text"]}
 
27
  sst_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
28
  sst_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
29
 
30
+ # LLM: Use local GGUF file if available, else raise error
31
  if os.path.exists("./models/llama.gguf"):
32
  llm = Llama("./models/llama.gguf")
33
  else:
 
43
  # API Endpoints
44
  @app.post("/tts")
45
  async def tts_endpoint(request: TTSRequest):
 
46
  text = request.text
47
  inputs = tts_tokenizer(text, return_tensors="pt")
48
  with torch.no_grad():
 
55
 
56
  @app.post("/sst")
57
  async def sst_endpoint(file: UploadFile = File(...)):
 
58
  audio_bytes = await file.read()
59
  audio, sr = sf.read(io.BytesIO(audio_bytes))
60
  inputs = sst_processor(audio, sampling_rate=sr, return_tensors="pt")
 
66
 
67
  @app.post("/llm")
68
  async def llm_endpoint(request: LLMRequest):
 
69
  prompt = request.prompt
70
  output = llm(prompt, max_tokens=50)
71
  return {"text": output["choices"][0]["text"]}