Librechat-copy / tests.py
akiko19191's picture
Update tests.py
717f61e verified
from mcp.server.fastmcp import FastMCP
import time
from litellm import completion
import os
import glob
import http.client
import json
import openpyxl
import shutil
from google import genai
import pexpect
client = genai.Client(api_key="AIzaSyDtP05TyoIy9j0uPL7_wLEhgQEE75AZQSc")
source_dir = "/app/uploads/temp"
destination_dir = "/app/code_interpreter"
files_list=[]
downloaded_files=[]
from openai import OpenAI
clienty = OpenAI(api_key="xyz", base_url="https://akiko19191-backend.hf.space/")
mcp = FastMCP("code_sandbox")
data={}
result=""
import requests
import os
from bs4 import BeautifulSoup # For parsing HTML
Parent=pexpect.spawn('bash')
def transfer_files():
try:
for item in os.listdir(source_dir):
item_path = os.path.join(source_dir, item)
if os.path.isdir(item_path): # Check if it's a directory
for filename in os.listdir(item_path):
source_file_path = os.path.join(item_path, filename)
destination_file_path = os.path.join(destination_dir, filename)
if not os.path.exists(destination_file_path):
shutil.move(source_file_path, destination_file_path)
except:
pass
def transfer_files2():
try:
for item in os.listdir("/app/uploads"):
if "temp" not in item:
item_path = os.path.join(source_dir, item)
if os.path.isdir(item_path): # Check if it's a directory
for filename in os.listdir(item_path):
source_file_path = os.path.join(item_path, filename)
destination_file_path = os.path.join(destination_dir, filename.split("__")[1])
if not os.path.exists(destination_file_path):
shutil.move(source_file_path, destination_file_path)
except:
pass
def upload_file(file_path, upload_url):
"""Uploads a file to the specified server endpoint."""
try:
# Check if the file exists
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
# Prepare the file for upload
with open(file_path, "rb") as file:
files = {"file": (os.path.basename(file_path), file)} # Important: Provide filename
# Send the POST request
response = requests.post(upload_url, files=files)
# Check the response status code
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
# Parse and print the response
if response.status_code == 200:
print(f"File uploaded successfully. Filename returned by server: {response.text}")
return response.text # Return the filename returned by the server
else:
print(f"Upload failed. Status code: {response.status_code}, Response: {response.text}")
return None
except FileNotFoundError as e:
print(e)
return None # or re-raise the exception if you want the program to halt
except requests.exceptions.RequestException as e:
print(f"Upload failed. Network error: {e}")
return None
TOKEN = "5182224145:AAEjkSlPqV-Q3rH8A9X8HfCDYYEQ44v_qy0"
chat_id = "5075390513"
from requests_futures.sessions import FuturesSession
session = FuturesSession()
def run(cmd, timeout_sec,forever_cmd):
global Parent
if forever_cmd == 'true':
Parent.close()
Parent = pexpect.spawn("bash")
command="cd /app/code_interpreter/ && "+cmd
Parent.sendline(command)
Parent.readline().decode()
return str(Parent.readline().decode())
t=time.time()
child = pexpect.spawn("bash")
output=""
command="cd /app/code_interpreter/ && "+cmd
child.sendline('PROMPT_COMMAND="echo END"')
child.readline().decode()
child.readline().decode()
child.sendline(command)
while (not child.eof() ) and (time.time()-t<timeout_sec):
x=child.readline().decode()
output=output+x
print(x)
if "END" in x :
output=output.replace("END","")
child.close()
break
if "true" in forever_cmd:
break
return output
@mcp.tool()
def analyse_audio(audiopath,query) -> dict:
"""Ask another AI model about audios.The AI model can listen to the audio and give answers.Eg-query:Generate detailed minutes of meeting from the audio clip,audiopath='/app/code_interpreter/<audioname>'.Note:The audios are automatically present in the /app/code_interpreter directory."""
transfer_files2()
myfile = client.files.upload(file=audiopath)
response = client.models.generate_content(
model='gemini-2.0-flash',
contents=[query, myfile]
)
return {"Output":str(response.text)}
@mcp.tool()
def analyse_video(videopath,query) -> dict:
"""Ask another AI model about videos.The AI model can see the videos and give answers.Eg-query:Create a very detailed transcript and summary of the video,videopath='/app/code_interpreter/<videoname>'Note:The videos are automatically present in the /app/code_interpreter directory."""
transfer_files2()
video_file = client.files.upload(file=videopath)
while video_file.state.name == "PROCESSING":
print('.', end='')
time.sleep(1)
video_file = client.files.get(name=video_file.name)
if video_file.state.name == "FAILED":
raise ValueError(video_file.state.name)
response = client.models.generate_content(
model='gemini-2.0-flash',
contents=[query, video_file]
)
return {"Output":str(response.text)}
@mcp.tool()
def analyse_images(imagepath,query) -> dict:
"""Ask another AI model about images.The AI model can see the images and give answers.Eg-query:Who is the person in this image?,imagepath='/app/code_interpreter/<imagename>'.Note:The images are automatically present in the /app/code_interpreter directory."""
transfer_files2()
video_file = client.files.upload(file=imagepath)
response = client.models.generate_content(
model='gemini-2.0-flash',
contents=[query, video_file]
)
return {"Output":str(response.text)}
# @mcp.tool()
# def generate_images(imagepath,query) -> dict:
# """Ask another AI model to generate images based on the query and the image path.Set image path as an empty string , if you dont want to edit images , but rather generate images.Eg-query:Generate a cartoon version of this image,imagepath='/app/code_interpreter/<imagename>'.Note:The images are automatically present in the /app/code_interpreter directory."""
# transfer_files2()
# video_file = client.files.upload(file=imagepath)
# response = client.models.generate_content(
# model='gemini-2.0-flash',
# contents=[query, video_file]
# )
# return {"Output":str(response.text)}
@mcp.tool()
def create_code_files(filename: str, code) -> dict:
"""Create code files by passing the the filename as well the entire code to write.The file is created by default in the /app/code_interpreter directory.Note:All user uploaded files that you might need to work upon are stored in the /app/code_interpreter directory."""
global destination_dir
transfer_files()
transfer_files2()
if not os.path.exists(os.path.join(destination_dir, filename)):
if isinstance(code, dict):
with open(os.path.join(destination_dir, filename), 'w', encoding='utf-8') as f:
json.dump(code, f, ensure_ascii=False, indent=4)
else:
f = open(os.path.join(destination_dir, filename), "w")
f.write(str(code))
f.close()
return {"info":"The referenced code files were created successfully."}
else:
if isinstance(code, dict):
with open(os.path.join(destination_dir, filename), 'w', encoding='utf-8') as f:
json.dump(code, f, ensure_ascii=False, indent=4)
else:
f = open(os.path.join(destination_dir, filename), "w")
f.write(str(code))
f.close()
return {"info":"The referenced code files were created successfully."}
# return {"info":"The referenced code files already exist. Please rename the file or delete the existing one."}
@mcp.tool()
def run_code(language:str,packages:str,filename: str, code: str,start_cmd:str,forever_cmd:str) -> dict:
"""
Execute code in a controlled environment with package installation and file handling.
Args:
language:Programming language of the code (eg:"python", "nodejs", "bash","html",etc).
packages: Space-separated list of packages to install.(python packages are installed if language set to python and npm packages are installed if language set to nodejs).
Preinstalled python packages: gradio, XlsxWriter, openpyxl , mpxj , jpype1.
Preinstalled npm packages: express, ejs, chart.js.
filename:Name of the file to create (stored in /app/code_interpreter/).
code:Full code to write to the file.
start_cmd:Command to execute the file (e.g., "python /app/code_interpreter/app.py"
or "bash /app/code_interpreter/app.py").
Leave blank ('') if only file creation is needed / start_cmd not required.
forever_cmd:If 'true', the command will run indefinitely.Set to 'true', when runnig a website/server.Run all servers/website on port 1337. If 'false', the command will time out after 300 second and the result will be returned.
Notes:
- All user-uploaded files are in /app/code_interpreter/.
- After execution, embed a download link (or display images/gifs/videos directly in markdown format) in your response.
- bash/apk packages cannot be installed.
- When editing and subsequently re-executing the server with the forever_cmd='true' setting, the previous server instance will be automatically terminated, and the updated server will commence operation. This functionality negates the requirement for manual process termination commands such as pkill node.
- The opened ports can be externally accessed at https://suitable-liked-ibex.ngrok-free.app/ (ONLY if the website is running successfully)
- Do not use `plt.show()` in this headless environment. Save visualizations directly (e.g., `plt.savefig("happiness_img.png")` or export GIFs/videos).
"""
global destination_dir
package_names = packages.strip()
if "python" in language:
command="pip install --break-system-packages "
elif "node" in language:
command="npm install "
else:
command="ls"
if packages != "" and packages != " ":
package_logs=run(
f"{command} {package_names}", timeout_sec=300,forever_cmd= 'false'
)
if "ERROR" in package_logs:
return {"package_installation_log":package_logs,"info":"Package installation failed. Please check the package names. Tip:Try using another package/method to accomplish the task."}
transfer_files2()
transfer_files()
f = open(os.path.join(destination_dir, filename), "w")
f.write(code)
f.close()
global files_list
if start_cmd != "" and start_cmd != " ":
stdot=run(start_cmd, 120,forever_cmd)
else:
stdot="File created successfully."
onlyfiles = glob.glob("/app/code_interpreter/*")
onlyfiles=list(set(onlyfiles)-set(files_list))
uploaded_filenames=[]
for files in onlyfiles:
try:
uploaded_filename = upload_file(files, "https://opengpt-4ik5.onrender.com/upload")
uploaded_filenames.append(f"https://opengpt-4ik5.onrender.com/static/{uploaded_filename}")
except:
pass
files_list=onlyfiles
return {"output":stdot,"Files_download_link":uploaded_filenames}
@mcp.tool()
def run_code_files(start_cmd:str,forever_cmd:str) -> dict:
"""Executes a shell command to run code files from /app/code_interpreter.
Runs the given `start_cmd`. The execution behavior depends on `forever_cmd`.
Any server/website started should use port 1337.
Args:
start_cmd (str): The shell command to execute the code.
(e.g., ``python /app/code_interpreter/app.py`` or ``node /app/code_interpreter/server.js``).
Files must be in ``/app/code_interpreter``.
forever_cmd (str): Execution mode.
- ``'true'``: Runs indefinitely (for servers/websites).
- ``'false'``: Runs up to 300s, captures output.
Returns:
dict: A dictionary containing:
- ``'output'`` (str): Captured stdout (mainly when forever_cmd='false').
- ``'Files_download_link'`` (Any): Links/identifiers for downloadable files.
Notes:
- After execution, embed a download link (or display images/gifs/videos directly in markdown format) in your response.
- When editing and subsequently re-executing the server with the forever_cmd='true' setting, the previous server instance will be automatically terminated, and the updated server will commence operation. This functionality negates the requirement for manual process termination commands such as pkill node.
- The opened ports can be externally accessed at https://suitable-liked-ibex.ngrok-free.app/ (ONLY if the website is running successfully)
"""
global files_list
stdot=run(start_cmd, 300,forever_cmd)
onlyfiles = glob.glob("/app/code_interpreter/*")
onlyfiles=list(set(onlyfiles)-set(files_list))
uploaded_filenames=[]
for files in onlyfiles:
try:
uploaded_filename = upload_file(files, "https://opengpt-4ik5.onrender.com/upload")
uploaded_filenames.append(f"https://opengpt-4ik5.onrender.com/static/{uploaded_filename}")
except:
pass
files_list=onlyfiles
return {"output":stdot,"Files_download_link":uploaded_filenames}
@mcp.tool()
def run_shell_command(cmd:str,forever_cmd:str) -> dict:
"""Executes a shell command in a sandboxed Alpine Linux environment.
Runs the provided `cmd` string within a bash shell. Commands are executed
relative to the `/app/code_interpreter/` working directory by default.
The execution behavior (indefinite run vs. timeout) is controlled by
the `forever_cmd` parameter.
Important Environment Notes:
- The execution environment is **Alpine Linux**. Commands should be
compatible .
- `sudo` commands are restricted for security reasons.Hence commands which require elevated privelages like `apk add` CANNOT be executed.Instead try to use `pip install` or `npm install` commands.
- Standard bash features like `&&`, `||`, pipes (`|`), etc., are supported.
Args:
cmd (str): The shell command to execute.
Example: ``mkdir test_dir && ls -l``
forever_cmd (str): Determines the execution mode.
- ``'true'``: Runs the command indefinitely. Suitable
for starting servers or long-running processes.
Output capture might be limited.
- ``'false'``: Runs the command until completion or
a 300-second timeout, whichever comes first.
Captures standard output.
Returns:
dict: A dictionary containing the execution results:
- ``'output'`` (str): The captured standard output (stdout) and potentially
standard error (stderr) from the command.
"""
transfer_files()
transfer_files2()
output=run(cmd, 300,forever_cmd)
return {"output":output}
@mcp.tool()
def install_python_packages(python_packages:str) -> dict:
"""python_packages to install seperated by space.eg-(python packages:numpy matplotlib).The following python packages are preinstalled:gradio XlsxWriter openpyxl"""
global sbx
package_names = python_packages.strip()
command="pip install"
if not package_names:
return
stdot=run(
f"{command} --break-system-packages {package_names}", timeout_sec=300, forever_cmd= 'false'
)
return {"stdout":stdot,"info":"Ran package installation command"}
@mcp.tool()
def get_youtube_transcript(videoid:str) -> dict:
"""Get the transcript of a youtube video by passing the video id.Eg videoid=ZacjOVVgoLY"""
conn = http.client.HTTPSConnection("youtube-transcript3.p.rapidapi.com")
headers = {
'x-rapidapi-key': "2a155d4498mshd52b7d6b7a2ff86p10cdd0jsn6252e0f2f529",
'x-rapidapi-host': "youtube-transcript3.p.rapidapi.com"
}
conn.request("GET",f"/api/transcript?videoId={videoid}", headers=headers)
res = conn.getresponse()
data = res.read()
return json.loads(data)
@mcp.tool()
def read_excel_file(filename) -> dict:
"""Reads the contents of an excel file.Returns a dict with key :value pair = cell location:cell content.Always run this command first , when working with excels.The excel file is automatically present in the /app/code_interpreter directory. """
global destination_dir
transfer_files2()
transfer_files()
workbook = openpyxl.load_workbook(os.path.join(destination_dir, filename))
# Create an empty dictionary to store the data
excel_data_dict = {}
# Iterate over all sheets
for sheet_name in workbook.sheetnames:
sheet = workbook[sheet_name]
# Iterate over all rows and columns
for row in sheet.iter_rows():
for cell in row:
# Get cell coordinate (e.g., 'A1') and value
cell_coordinate = cell.coordinate
cell_value = cell.value
if cell_value is not None:
excel_data_dict[cell_coordinate] = str(cell_value)
return excel_data_dict
@mcp.tool()
def scrape_websites(url_list:list,query:str) -> list:
"""Scrapes specific website content.query is the question you want to ask about the content of the website.e.g-query:Give .pptx links in the website,Summarise the content in very great detail,etc.Maximum 4 urls can be passed at a time."""
conn = http.client.HTTPSConnection("scrapeninja.p.rapidapi.com")
headers = {
'x-rapidapi-key': "2a155d4498mshd52b7d6b7a2ff86p10cdd0jsn6252e0f2f529",
'x-rapidapi-host': "scrapeninja.p.rapidapi.com",
'Content-Type': "application/json"
}
Output=""
links=""
content=""
for urls in url_list:
payload = {"url" :urls}
payload=json.dumps(payload)
conn.request("POST", "/scrape", payload, headers)
res = conn.getresponse()
data = res.read()
content=content+str(data.decode("utf-8"))
#Only thing llama 4 is good for.
response = clienty.chat.completions.create(
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
messages=[
{"role": "user", "content": f"{query} [CONTENT]:{content}"}
],stream=True
)
for chunk in response:
Output = Output +str(chunk.choices[0].delta.content)
#--------------
response2 = clienty.chat.completions.create(
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",
messages=[
{"role": "user", "content": f"Give all relevant and different types of links in this content.The links may be relevant image links , file links , video links , website links , etc .You must give Minimum 30 links and maximum 50 links.[CONTENT]:{content}"}
],stream=True
)
for chunk in response2:
links = links +str(chunk.choices[0].delta.content)
return {"website_content":Output,"relevant_links":links}
if __name__ == "__main__":
# Initialize and run the server
Ngrok=pexpect.spawn('bash')
Ngrok.sendline("ngrok http --url=suitable-liked-ibex.ngrok-free.app 1337 --config /home/node/.config/ngrok/ngrok.yml")
Ngrok.readline().decode()
mcp.run(transport='stdio')