Spaces:
Running
Running
import os | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from dotenv import load_dotenv | |
from tavily import TavilyClient | |
# Load environment variables | |
load_dotenv() | |
# Initialize clients | |
client = InferenceClient( | |
provider="novita", | |
api_key=os.getenv("HF_TOKEN"), | |
bill_to="huggingface" | |
) | |
tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY")) | |
def get_web_context(query): | |
""" | |
Get relevant web search results using Tavily | |
""" | |
try: | |
response = tavily_client.search( | |
query=query, | |
search_depth="advanced", | |
max_results=3 | |
) | |
# Format the search results | |
context = "Web Search Results:\n\n" | |
for result in response['results']: | |
context += f"Title: {result['title']}\n" | |
context += f"URL: {result['url']}\n" | |
context += f"Content: {result['content']}\n\n" | |
return context | |
except Exception as e: | |
return f"Error getting web context: {str(e)}" | |
def chat(message, history): | |
""" | |
Process chat messages using Hugging Face's Inference Provider with web context | |
""" | |
try: | |
# Get web context | |
web_context = get_web_context(message) | |
# Format the conversation history | |
messages = [] | |
for human, assistant in history: | |
messages.append({"role": "user", "content": human}) | |
messages.append({"role": "assistant", "content": assistant}) | |
# Add system message with web context | |
messages.append({ | |
"role": "system", | |
"content": f"You are a helpful AI assistant. Use the following web search results to inform your response:\n\n{web_context}" | |
}) | |
# Add user message | |
messages.append({"role": "user", "content": message}) | |
# Get streaming response from the model | |
stream = client.chat.completions.create( | |
model="deepseek-ai/DeepSeek-V3-0324", | |
messages=messages, | |
temperature=0.7, | |
max_tokens=1000, | |
stream=True | |
) | |
# Stream the response | |
partial_message = "" | |
for chunk in stream: | |
if chunk.choices[0].delta.content is not None: | |
partial_message += chunk.choices[0].delta.content | |
yield partial_message | |
except Exception as e: | |
yield f"Error: {str(e)}" | |
# Create Gradio interface | |
with gr.Blocks(title="DeepSearch - AI Search Assistant") as demo: | |
chatbot = gr.ChatInterface( | |
fn=chat, | |
examples=[ | |
"What is the capital of France?", | |
"Explain quantum computing in simple terms", | |
"Write a short poem about artificial intelligence" | |
], | |
title="DeepSearch", | |
description="Ask me anything, powered by Hugging Face Inference Providers", | |
theme=gr.themes.Soft() | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |