File size: 24,647 Bytes
506da10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""This file contains wrapper classes for convolution layers of tf.keras and Switchable Atrous Convolution.

Switchable Atrous Convolution (SAC) is convolution with a switchable atrous
rate. It also has optional pre- and post-global context layers.
[1] Siyuan Qiao, Liang-Chieh Chen, Alan Yuille. DetectoRS: Detecting Objects
    with Recursive Feature Pyramid and Switchable Atrous Convolution.
    arXiv:2006.02334
"""
import functools
from typing import Optional

from absl import logging
import tensorflow as tf

from deeplab2.model import utils
from deeplab2.model.layers import activations


def _compute_padding_size(kernel_size, atrous_rate):
  kernel_size_effective = kernel_size + (kernel_size - 1) * (atrous_rate - 1)
  pad_total = kernel_size_effective - 1
  pad_begin = pad_total // 2
  pad_end = pad_total - pad_begin
  if pad_begin != pad_end:
    logging.warn('Convolution requires one more padding to the '
                 'bottom-right pixel. This may cause misalignment.')
  return (pad_begin, pad_end)


class GlobalContext(tf.keras.layers.Layer):
  """Class for the global context modules in Switchable Atrous Convolution."""

  def build(self, input_shape):
    super().build(input_shape)
    input_shape = tf.TensorShape(input_shape)
    input_channel = self._get_input_channel(input_shape)
    self.global_average_pooling = tf.keras.layers.GlobalAveragePooling2D()
    self.convolution = tf.keras.layers.Conv2D(
        input_channel, 1, strides=1, padding='same', name=self.name + '_conv',
        kernel_initializer='zeros', bias_initializer='zeros')

  def call(self, inputs, *args, **kwargs):
    outputs = self.global_average_pooling(inputs)
    outputs = tf.expand_dims(outputs, axis=1)
    outputs = tf.expand_dims(outputs, axis=1)
    outputs = self.convolution(outputs)
    return inputs + outputs

  def _get_input_channel(self, input_shape):
    # Reference: tf.keras.layers.convolutional.Conv.
    if input_shape.dims[-1].value is None:
      raise ValueError('The channel dimension of the inputs '
                       'should be defined. Found `None`.')
    return int(input_shape[-1])


class SwitchableAtrousConvolution(tf.keras.layers.Conv2D):
  """Class for the Switchable Atrous Convolution."""

  def __init__(self, *args, **kwargs):
    super().__init__(*args, **kwargs)
    self._average_pool = tf.keras.layers.AveragePooling2D(
        pool_size=(5, 5), strides=1, padding='same')
    self._switch = tf.keras.layers.Conv2D(
        1,
        kernel_size=1,
        strides=self.strides,
        padding='same',
        dilation_rate=1,
        name='switch',
        kernel_initializer='zeros',
        bias_initializer='zeros')

  def build(self, input_shape):
    super().build(input_shape)
    if self.padding == 'causal':
      tf_padding = 'VALID'
    elif isinstance(self.padding, str):
      tf_padding = self.padding.upper()
    else:
      tf_padding = self.padding
    large_dilation_rate = list(self.dilation_rate)
    large_dilation_rate = [r * 3 for r in large_dilation_rate]
    self._large_convolution_op = functools.partial(
        tf.nn.convolution,
        strides=list(self.strides),
        padding=tf_padding,
        dilations=large_dilation_rate,
        data_format=self._tf_data_format,
        name=self.__class__.__name__ + '_large')

  def call(self, inputs):
    # Reference: tf.keras.layers.convolutional.Conv.
    input_shape = inputs.shape
    switches = self._switch(self._average_pool(inputs))

    if self._is_causal:  # Apply causal padding to inputs for Conv1D.
      inputs = tf.compat.v1.pad(inputs, self._compute_causal_padding(inputs))

    outputs = self._convolution_op(inputs, self.kernel)
    outputs_large = self._large_convolution_op(inputs, self.kernel)

    outputs = switches * outputs_large + (1 - switches) * outputs

    if self.use_bias:
      outputs = tf.nn.bias_add(
          outputs, self.bias, data_format=self._tf_data_format)

    if not tf.executing_eagerly():
      # Infer the static output shape:
      out_shape = self.compute_output_shape(input_shape)
      outputs.set_shape(out_shape)

    if self.activation is not None:
      return self.activation(outputs)
    return outputs

  def squeeze_batch_dims(self, inp, op, inner_rank):
    # Reference: tf.keras.utils.conv_utils.squeeze_batch_dims.
    with tf.name_scope('squeeze_batch_dims'):
      shape = inp.shape

      inner_shape = shape[-inner_rank:]
      if not inner_shape.is_fully_defined():
        inner_shape = tf.compat.v1.shape(inp)[-inner_rank:]

      batch_shape = shape[:-inner_rank]
      if not batch_shape.is_fully_defined():
        batch_shape = tf.compat.v1.shape(inp)[:-inner_rank]

      if isinstance(inner_shape, tf.TensorShape):
        inp_reshaped = tf.reshape(inp, [-1] + inner_shape.as_list())
      else:
        inp_reshaped = tf.reshape(
            inp, tf.concat(([-1], inner_shape), axis=-1))

      out_reshaped = op(inp_reshaped)

      out_inner_shape = out_reshaped.shape[-inner_rank:]
      if not out_inner_shape.is_fully_defined():
        out_inner_shape = tf.compat.v1.shape(out_reshaped)[-inner_rank:]

      out = tf.reshape(
          out_reshaped, tf.concat((batch_shape, out_inner_shape), axis=-1))

      out.set_shape(inp.shape[:-inner_rank] + out.shape[-inner_rank:])
      return out


class Conv2DSame(tf.keras.layers.Layer):
  """A wrapper class for a 2D convolution with 'same' padding.

  In contrast to tf.keras.layers.Conv2D, this layer aligns the kernel with the
  top-left corner rather than the bottom-right corner. Optionally, a batch
  normalization and an activation can be added on top.
  """

  def __init__(
      self,
      output_channels: int,
      kernel_size: int,
      name: str,
      strides: int = 1,
      atrous_rate: int = 1,
      use_bias: bool = True,
      use_bn: bool = False,
      bn_layer: tf.keras.layers.Layer = tf.keras.layers.BatchNormalization,
      bn_gamma_initializer: str = 'ones',
      activation: Optional[str] = None,
      use_switchable_atrous_conv: bool = False,
      use_global_context_in_sac: bool = False,
      conv_kernel_weight_decay: float = 0.0):
    """Initializes convolution with zero padding aligned to the top-left corner.

    DeepLab aligns zero padding differently to tf.keras 'same' padding.
    Considering a convolution with a 7x7 kernel, a stride of 2 and an even input
    size, tf.keras 'same' padding will add 2 zero padding to the top-left and 3
    zero padding to the bottom-right. However, for consistent feature alignment,
    DeepLab requires an equal padding of 3 in all directions. This behavior is
    consistent with e.g. the ResNet 'stem' block.

    Args:
      output_channels: An integer specifying the number of filters of the
        convolution.
      kernel_size: An integer specifying the size of the convolution kernel.
      name: A string specifying the name of this layer.
      strides: An optional integer or tuple of integers specifying the size of
        the strides (default: 1).
      atrous_rate: An optional integer or tuple of integers specifying the
        atrous rate of the convolution (default: 1).
      use_bias: An optional flag specifying whether bias should be added for the
        convolution.
      use_bn: An optional flag specifying whether batch normalization should be
        added after the convolution (default: False).
      bn_layer: An optional tf.keras.layers.Layer that computes the
        normalization (default: tf.keras.layers.BatchNormalization).
      bn_gamma_initializer: An initializer for the batch norm gamma weight.
      activation: An optional flag specifying an activation function to be added
        after the convolution.
      use_switchable_atrous_conv: Boolean, whether the layer uses switchable
        atrous convolution.
      use_global_context_in_sac: Boolean, whether the switchable atrous
        convolution (SAC) uses pre- and post-global context.
      conv_kernel_weight_decay: A float, the weight decay for convolution
        kernels.

    Raises:
      ValueError: If use_bias and use_bn in the convolution.
    """
    super(Conv2DSame, self).__init__(name=name)

    if use_bn and use_bias:
      raise ValueError('Conv2DSame is using convolution bias with batch_norm.')

    if use_global_context_in_sac:
      self._pre_global_context = GlobalContext(name='pre_global_context')

    convolution_op = tf.keras.layers.Conv2D
    convolution_padding = 'same'
    if strides == 1 or strides == (1, 1):
      if use_switchable_atrous_conv:
        convolution_op = SwitchableAtrousConvolution
    else:
      padding = _compute_padding_size(kernel_size, atrous_rate)
      self._zeropad = tf.keras.layers.ZeroPadding2D(
          padding=(padding, padding), name='zeropad')
      convolution_padding = 'valid'
    self._conv = convolution_op(
        output_channels,
        kernel_size,
        strides=strides,
        padding=convolution_padding,
        use_bias=use_bias,
        dilation_rate=atrous_rate,
        name='conv',
        kernel_initializer='he_normal',
        kernel_regularizer=tf.keras.regularizers.l2(
            conv_kernel_weight_decay))

    if use_global_context_in_sac:
      self._post_global_context = GlobalContext(name='post_global_context')

    if use_bn:
      self._batch_norm = bn_layer(axis=3, name='batch_norm',
                                  gamma_initializer=bn_gamma_initializer)

    self._activation_fn = None
    if activation is not None:
      self._activation_fn = activations.get_activation(activation)

    self._use_global_context_in_sac = use_global_context_in_sac
    self._strides = strides
    self._use_bn = use_bn

  def call(self, input_tensor, training=False):
    """Performs a forward pass.

    Args:
      input_tensor: An input tensor of type tf.Tensor with shape [batch, height,
        width, channels].
      training: A boolean flag indicating whether training behavior should be
        used (default: False).

    Returns:
      The output tensor.
    """
    x = input_tensor
    if self._use_global_context_in_sac:
      x = self._pre_global_context(x)

    if not (self._strides == 1 or self._strides == (1, 1)):
      x = self._zeropad(x)
    x = self._conv(x)

    if self._use_global_context_in_sac:
      x = self._post_global_context(x)

    if self._use_bn:
      x = self._batch_norm(x, training=training)

    if self._activation_fn is not None:
      x = self._activation_fn(x)
    return x


class DepthwiseConv2DSame(tf.keras.layers.Layer):
  """A wrapper class for a 2D depthwise convolution.

  In contrast to convolutions in tf.keras.layers.DepthwiseConv2D, this layers
  aligns the kernel with the top-left corner rather than the bottom-right
  corner. Optionally, a batch normalization and an activation can be added.
  """

  def __init__(self,
               kernel_size: int,
               name: str,
               strides: int = 1,
               atrous_rate: int = 1,
               use_bias: bool = True,
               use_bn: bool = False,
               bn_layer=tf.keras.layers.BatchNormalization,
               activation: Optional[str] = None):
    """Initializes a 2D depthwise convolution.

    Args:
      kernel_size: An integer specifying the size of the convolution kernel.
      name: A string specifying the name of this layer.
      strides: An optional integer or tuple of integers specifying the size of
        the strides (default: 1).
      atrous_rate: An optional integer or tuple of integers specifying the
        atrous rate of the convolution (default: 1).
      use_bias: An optional flag specifying whether bias should be added for the
        convolution.
      use_bn: An optional flag specifying whether batch normalization should be
        added after the convolution (default: False).
      bn_layer: An optional tf.keras.layers.Layer that computes the
        normalization (default: tf.keras.layers.BatchNormalization).
      activation: An optional flag specifying an activation function to be added
        after the convolution.

    Raises:
      ValueError: If use_bias and use_bn in the convolution.
    """
    super(DepthwiseConv2DSame, self).__init__(name=name)

    if use_bn and use_bias:
      raise ValueError(
          'DepthwiseConv2DSame is using convlution bias with batch_norm.')

    if strides == 1 or strides == (1, 1):
      convolution_padding = 'same'
    else:
      padding = _compute_padding_size(kernel_size, atrous_rate)
      self._zeropad = tf.keras.layers.ZeroPadding2D(
          padding=(padding, padding), name='zeropad')
      convolution_padding = 'valid'
    self._depthwise_conv = tf.keras.layers.DepthwiseConv2D(
        kernel_size=kernel_size,
        strides=strides,
        padding=convolution_padding,
        use_bias=use_bias,
        dilation_rate=atrous_rate,
        name='depthwise_conv')
    if use_bn:
      self._batch_norm = bn_layer(axis=3, name='batch_norm')

    self._activation_fn = None
    if activation is not None:
      self._activation_fn = activations.get_activation(activation)

    self._strides = strides
    self._use_bn = use_bn

  def call(self, input_tensor, training=False):
    """Performs a forward pass.

    Args:
      input_tensor: An input tensor of type tf.Tensor with shape [batch, height,
        width, channels].
      training: A boolean flag indicating whether training behavior should be
        used (default: False).

    Returns:
      The output tensor.
    """
    x = input_tensor
    if not (self._strides == 1 or self._strides == (1, 1)):
      x = self._zeropad(x)
    x = self._depthwise_conv(x)
    if self._use_bn:
      x = self._batch_norm(x, training=training)
    if self._activation_fn is not None:
      x = self._activation_fn(x)
    return x


class SeparableConv2DSame(tf.keras.layers.Layer):
  """A wrapper class for a 2D separable convolution.

  In contrast to convolutions in tf.keras.layers.SeparableConv2D, this layers
  aligns the kernel with the top-left corner rather than the bottom-right
  corner. Optionally, a batch normalization and an activation can be added.
  """

  def __init__(
      self,
      output_channels: int,
      kernel_size: int,
      name: str,
      strides: int = 1,
      atrous_rate: int = 1,
      use_bias: bool = True,
      use_bn: bool = False,
      bn_layer: tf.keras.layers.Layer = tf.keras.layers.BatchNormalization,
      activation: Optional[str] = None):
    """Initializes a 2D separable convolution.

    Args:
      output_channels: An integer specifying the number of filters of the
        convolution output.
      kernel_size: An integer specifying the size of the convolution kernel.
      name: A string specifying the name of this layer.
      strides: An optional integer or tuple of integers specifying the size of
        the strides (default: 1).
      atrous_rate: An optional integer or tuple of integers specifying the
        atrous rate of the convolution (default: 1).
      use_bias: An optional flag specifying whether bias should be added for the
        convolution.
      use_bn: An optional flag specifying whether batch normalization should be
        added after the convolution (default: False).
      bn_layer: An optional tf.keras.layers.Layer that computes the
        normalization (default: tf.keras.layers.BatchNormalization).
      activation: An optional flag specifying an activation function to be added
        after the convolution.

    Raises:
      ValueError: If use_bias and use_bn in the convolution.
    """
    super(SeparableConv2DSame, self).__init__(name=name)
    if use_bn and use_bias:
      raise ValueError(
          'SeparableConv2DSame is using convolution bias with batch_norm.')

    self._depthwise = DepthwiseConv2DSame(
        kernel_size=kernel_size,
        name='depthwise',
        strides=strides,
        atrous_rate=atrous_rate,
        use_bias=use_bias,
        use_bn=use_bn,
        bn_layer=bn_layer,
        activation=activation)
    self._pointwise = Conv2DSame(
        output_channels=output_channels,
        kernel_size=1,
        name='pointwise',
        strides=1,
        atrous_rate=1,
        use_bias=use_bias,
        use_bn=use_bn,
        bn_layer=bn_layer,
        activation=activation)

  def call(self, input_tensor, training=False):
    """Performs a forward pass.

    Args:
      input_tensor: An input tensor of type tf.Tensor with shape [batch, height,
        width, channels].
      training: A boolean flag indicating whether training behavior should be
        used (default: False).

    Returns:
      The output tensor.
    """
    x = self._depthwise(input_tensor, training=training)
    return self._pointwise(x, training=training)


class StackedConv2DSame(tf.keras.layers.Layer):
  """Stacked Conv2DSame or SeparableConv2DSame.

  This class sequentially stacks a given number of Conv2DSame layers or
  SeparableConv2DSame layers.
  """

  def __init__(
      self,
      num_layers: int,
      conv_type: str,
      output_channels: int,
      kernel_size: int,
      name: str,
      strides: int = 1,
      atrous_rate: int = 1,
      use_bias: bool = True,
      use_bn: bool = False,
      bn_layer: tf.keras.layers.Layer = tf.keras.layers.BatchNormalization,
      activation: Optional[str] = None):
    """Initializes a stack of convolutions.

    Args:
      num_layers: The number of convolutions to create.
      conv_type: A string specifying the convolution type used in each block.
        Must be one of 'standard_conv' or 'depthwise_separable_conv'.
      output_channels: An integer specifying the number of filters of the
        convolution output.
      kernel_size: An integer specifying the size of the convolution kernel.
      name: A string specifying the name of this layer.
      strides: An optional integer or tuple of integers specifying the size of
        the strides (default: 1).
      atrous_rate: An optional integer or tuple of integers specifying the
        atrous rate of the convolution (default: 1).
      use_bias: An optional flag specifying whether bias should be added for the
        convolution.
      use_bn: An optional flag specifying whether batch normalization should be
        added after the convolution (default: False).
      bn_layer: An optional tf.keras.layers.Layer that computes the
        normalization (default: tf.keras.layers.BatchNormalization).
      activation: An optional flag specifying an activation function to be added
        after the convolution.

    Raises:
      ValueError: An error occurs when conv_type is neither 'standard_conv'
        nor 'depthwise_separable_conv'.
    """
    super(StackedConv2DSame, self).__init__(name=name)
    if conv_type == 'standard_conv':
      convolution_op = Conv2DSame
    elif conv_type == 'depthwise_separable_conv':
      convolution_op = SeparableConv2DSame
    else:
      raise ValueError('Convolution %s not supported.' % conv_type)

    for index in range(num_layers):
      current_name = utils.get_conv_bn_act_current_name(index, use_bn,
                                                        activation)
      utils.safe_setattr(self, current_name, convolution_op(
          output_channels=output_channels,
          kernel_size=kernel_size,
          name=utils.get_layer_name(current_name),
          strides=strides,
          atrous_rate=atrous_rate,
          use_bias=use_bias,
          use_bn=use_bn,
          bn_layer=bn_layer,
          activation=activation))
    self._num_layers = num_layers
    self._use_bn = use_bn
    self._activation = activation

  def call(self, input_tensor, training=False):
    """Performs a forward pass.

    Args:
      input_tensor: An input tensor of type tf.Tensor with shape [batch, height,
        width, channels].
      training: A boolean flag indicating whether training behavior should be
        used (default: False).

    Returns:
      The output tensor.
    """
    x = input_tensor
    for index in range(self._num_layers):
      current_name = utils.get_conv_bn_act_current_name(index, self._use_bn,
                                                        self._activation)
      x = getattr(self, current_name)(x, training=training)
    return x


class Conv1D(tf.keras.layers.Layer):
  """A wrapper class for a 1D convolution with batch norm and activation.

  Conv1D creates a convolution kernel that is convolved with the layer input
  over a single spatial (or temporal) dimension to produce a tensor of outputs.
  The input should always be 3D with shape [batch, length, channel], so
  accordingly, the optional batch norm is done on axis=2.

  In DeepLab, we use Conv1D only with kernel_size = 1 for dual path transformer
  layers in MaX-DeepLab [1] architectures.

  Reference:
  [1] MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Transformers,
      CVPR 2021.
        Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, Liang-Chieh Chen.
  """

  def __init__(
      self,
      output_channels: int,
      name: str,
      use_bias: bool = True,
      use_bn: bool = False,
      bn_layer: tf.keras.layers.Layer = tf.keras.layers.BatchNormalization,
      bn_gamma_initializer: str = 'ones',
      activation: Optional[str] = None,
      conv_kernel_weight_decay: float = 0.0,
      kernel_initializer='he_normal',
      kernel_size: int = 1,
      padding: str = 'valid'):
    """Initializes a Conv1D.

    Args:
      output_channels: An integer specifying the number of filters of the
        convolution.
      name: A string specifying the name of this layer.
      use_bias: An optional flag specifying whether bias should be added for the
        convolution.
      use_bn: An optional flag specifying whether batch normalization should be
        added after the convolution (default: False).
      bn_layer: An optional tf.keras.layers.Layer that computes the
        normalization (default: tf.keras.layers.BatchNormalization).
      bn_gamma_initializer: An initializer for the batch norm gamma weight.
      activation: An optional flag specifying an activation function to be added
        after the convolution.
      conv_kernel_weight_decay: A float, the weight decay for convolution
        kernels.
      kernel_initializer: An initializer for the convolution kernel.
      kernel_size: An integer specifying the size of the convolution kernel.
      padding: An optional string specifying the padding to use. Must be either
        'same' or 'valid' (default: 'valid').

    Raises:
      ValueError: If use_bias and use_bn in the convolution.
    """
    super(Conv1D, self).__init__(name=name)

    if use_bn and use_bias:
      raise ValueError('Conv1D is using convlution bias with batch_norm.')

    self._conv = tf.keras.layers.Conv1D(
        output_channels,
        kernel_size=kernel_size,
        strides=1,
        padding=padding,
        use_bias=use_bias,
        name='conv',
        kernel_initializer=kernel_initializer,
        kernel_regularizer=tf.keras.regularizers.l2(
            conv_kernel_weight_decay))

    self._batch_norm = None
    if use_bn:
      # Batch norm uses axis=2 because the input is 3D with channel being the
      # last dimension.
      self._batch_norm = bn_layer(axis=2, name='batch_norm',
                                  gamma_initializer=bn_gamma_initializer)

    self._activation_fn = None
    if activation is not None:
      self._activation_fn = activations.get_activation(activation)

  def call(self, input_tensor, training=False):
    """Performs a forward pass.

    Args:
      input_tensor: An input tensor of type tf.Tensor with shape [batch, length,
        channels].
      training: A boolean flag indicating whether training behavior should be
        used (default: False).

    Returns:
      The output tensor.
    """
    x = self._conv(input_tensor)
    if self._batch_norm is not None:
      x = self._batch_norm(x, training=training)
    if self._activation_fn is not None:
      x = self._activation_fn(x)
    return x