File size: 14,725 Bytes
506da10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""AutoAugment utility file.

Please cite or refer to the following papers:
- Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.
"Autoaugment: Learning augmentation policies from data." In CVPR, 2019.

- Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le.
"Randaugment: Practical automated data augmentation with a reduced search
space." In CVPR, 2020.
"""

import inspect

import tensorflow as tf

from deeplab2.data.preprocessing import autoaugment_policy


# This signifies the max integer that the controller RNN could predict for the
# augmentation scheme.
_MAX_LEVEL = 10.


def blend(image1, image2, factor):
  """Blends image1 and image2 using 'factor'.

  Factor can be above 0.0.  A value of 0.0 means only image1 is used.
  A value of 1.0 means only image2 is used.  A value between 0.0 and
  1.0 means we linearly interpolate the pixel values between the two
  images.  A value greater than 1.0 "extrapolates" the difference
  between the two pixel values, and we clip the results to values
  between 0 and 255.

  Args:
    image1: An image Tensor of type uint8.
    image2: An image Tensor of type uint8.
    factor: A floating point value above 0.0.

  Returns:
    A blended image Tensor of type uint8.
  """
  if factor == 0.0:
    return tf.convert_to_tensor(image1)
  if factor == 1.0:
    return tf.convert_to_tensor(image2)

  image1 = tf.cast(image1, tf.float32)
  image2 = tf.cast(image2, tf.float32)

  difference = image2 - image1
  scaled = factor * difference

  # Do addition in float.
  temp = tf.cast(image1, tf.float32) + scaled

  # Interpolate
  if factor > 0.0 and factor < 1.0:
    # Interpolation means we always stay within 0 and 255.
    return tf.cast(temp, tf.uint8)

  # Extrapolate:
  #
  # We need to clip and then cast.
  return tf.cast(tf.clip_by_value(temp, 0.0, 255.0), tf.uint8)


def solarize(image, threshold=128):
  # For each pixel in the image, select the pixel
  # if the value is less than the threshold.
  # Otherwise, subtract 255 from the pixel.
  return tf.where(image < threshold, image, 255 - image)


def invert(image):
  """Inverts the image pixels."""
  image = tf.convert_to_tensor(image)
  return 255 - image


def color(image, factor):
  """Equivalent of PIL Color."""
  degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image))
  return blend(degenerate, image, factor)


def contrast(image, factor):
  """Equivalent of PIL Contrast."""
  degenerate = tf.image.rgb_to_grayscale(image)
  # Cast before calling tf.histogram.
  degenerate = tf.cast(degenerate, tf.int32)

  # Compute the grayscale histogram, then compute the mean pixel value,
  # and create a constant image size of that value.  Use that as the
  # blending degenerate target of the original image.
  hist = tf.histogram_fixed_width(degenerate, [0, 255], nbins=256)
  mean = tf.reduce_sum(tf.cast(hist, tf.float32)) / 256.0
  degenerate = tf.ones_like(degenerate, dtype=tf.float32) * mean
  degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
  degenerate = tf.image.grayscale_to_rgb(tf.cast(degenerate, tf.uint8))
  return blend(degenerate, image, factor)


def brightness(image, factor):
  """Equivalent of PIL Brightness."""
  degenerate = tf.zeros_like(image)
  return blend(degenerate, image, factor)


def posterize(image, bits):
  """Equivalent of PIL Posterize."""
  shift = 8 - bits
  return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift)


def autocontrast(image):
  """Implements Autocontrast function from PIL using TF ops.

  Args:
    image: A 3D uint8 tensor.

  Returns:
    The image after it has had autocontrast applied to it and will be of type
    uint8.
  """

  def scale_channel(image):
    """Scale the 2D image using the autocontrast rule."""
    # A possibly cheaper version can be done using cumsum/unique_with_counts
    # over the histogram values, rather than iterating over the entire image.
    # to compute mins and maxes.
    lo = tf.cast(tf.reduce_min(image), tf.float32)
    hi = tf.cast(tf.reduce_max(image), tf.float32)

    # Scale the image, making the lowest value 0 and the highest value 255.
    def scale_values(im):
      scale = 255.0 / (hi - lo)
      offset = -lo * scale
      im = tf.cast(im, tf.float32) * scale + offset
      im = tf.clip_by_value(im, 0.0, 255.0)
      return tf.cast(im, tf.uint8)

    result = tf.cond(hi > lo, lambda: scale_values(image), lambda: image)
    return result

  # Assumes RGB for now.  Scales each channel independently
  # and then stacks the result.
  s1 = scale_channel(image[:, :, 0])
  s2 = scale_channel(image[:, :, 1])
  s3 = scale_channel(image[:, :, 2])
  image = tf.stack([s1, s2, s3], 2)
  return image


def sharpness(image, factor):
  """Implements Sharpness function from PIL using TF ops."""
  orig_image = image
  image = tf.cast(image, tf.float32)
  # Make image 4D for conv operation.
  image = tf.expand_dims(image, 0)
  # SMOOTH PIL Kernel.
  kernel = tf.constant(
      [[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=tf.float32,
      shape=[3, 3, 1, 1]) / 13.
  # Tile across channel dimension.
  kernel = tf.tile(kernel, [1, 1, 3, 1])
  strides = [1, 1, 1, 1]
  degenerate = tf.nn.depthwise_conv2d(
      image, kernel, strides, padding='VALID', dilations=[1, 1])
  degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
  degenerate = tf.squeeze(tf.cast(degenerate, tf.uint8), [0])

  # For the borders of the resulting image, fill in the values of the
  # original image.
  mask = tf.ones_like(degenerate)
  padded_mask = tf.pad(mask, [[1, 1], [1, 1], [0, 0]])
  padded_degenerate = tf.pad(degenerate, [[1, 1], [1, 1], [0, 0]])
  result = tf.where(tf.equal(padded_mask, 1), padded_degenerate, orig_image)

  # Blend the final result.
  return blend(result, orig_image, factor)


def equalize(image):
  """Implements Equalize function from PIL using TF ops."""
  def scale_channel(im, c):
    """Scale the data in the channel to implement equalize."""
    im = tf.cast(im[:, :, c], tf.int32)
    # Compute the histogram of the image channel.
    histo = tf.histogram_fixed_width(im, [0, 255], nbins=256)

    # For the purposes of computing the step, filter out the nonzeros.
    nonzero = tf.where(tf.not_equal(histo, 0))
    nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1])
    step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255

    def build_lut(histo, step):
      # Compute the cumulative sum, shifting by step // 2
      # and then normalization by step.
      lut = (tf.cumsum(histo) + (step // 2)) // step
      # Shift lut, prepending with 0.
      lut = tf.concat([[0], lut[:-1]], 0)
      # Clip the counts to be in range.  This is done
      # in the C code for image.point.
      return tf.clip_by_value(lut, 0, 255)

    # If step is zero, return the original image.  Otherwise, build
    # lut from the full histogram and step and then index from it.
    result = tf.cond(tf.equal(step, 0),
                     lambda: im,
                     lambda: tf.gather(build_lut(histo, step), im))

    return tf.cast(result, tf.uint8)

  # Assumes RGB for now.  Scales each channel independently
  # and then stacks the result.
  s1 = scale_channel(image, 0)
  s2 = scale_channel(image, 1)
  s3 = scale_channel(image, 2)
  image = tf.stack([s1, s2, s3], 2)
  return image


NAME_TO_FUNC = {
    'AutoContrast': autocontrast,
    'Equalize': equalize,
    'Invert': invert,
    'Posterize': posterize,
    'Solarize': solarize,
    'Color': color,
    'Contrast': contrast,
    'Brightness': brightness,
    'Sharpness': sharpness,
}


def _enhance_level_to_arg(level):
  return ((level/_MAX_LEVEL) * 1.8 + 0.1,)


def level_to_arg():
  return {
      'AutoContrast':
          lambda level: (),
      'Equalize':
          lambda level: (),
      'Invert':
          lambda level: (),
      'Posterize': lambda level: (int((level/_MAX_LEVEL) * 4),),
      'Solarize': lambda level: (int((level/_MAX_LEVEL) * 256),),
      'Color':
          _enhance_level_to_arg,
      'Contrast':
          _enhance_level_to_arg,
      'Brightness':
          _enhance_level_to_arg,
      'Sharpness':
          _enhance_level_to_arg,
  }


def label_wrapper(func):
  """Adds a label function argument to func and returns unchanged label."""
  def wrapper(images, label, *args, **kwargs):
    return func(images, *args, **kwargs), label
  return wrapper


def _parse_policy_info(name, prob, level, replace_value, ignore_label):
  """Returns the function corresponding to `name` and update `level` param."""
  func = NAME_TO_FUNC[name]
  args = level_to_arg()[name](level)

  if 'prob' in inspect.getfullargspec(func)[0]:
    args = tuple([prob] + list(args))

  # Add in replace arg if it is required for the function that is being called.
  if 'replace' in inspect.getfullargspec(func)[0]:
    # Make sure ignore_label is also in the argument.
    assert 'ignore_label' in inspect.getfullargspec(func)[0]
    # Make sure replace is the second from last argument
    assert 'replace' == inspect.getfullargspec(func)[0][-2]
    # Make sure ignore_label is the final argument
    assert 'ignore_label' == inspect.getfullargspec(func)[0][-1]
    args = tuple(list(args) + [replace_value, ignore_label])

  # Add label as the second positional argument for the function if it does
  # not already exist.
  if 'label' not in inspect.getfullargspec(func)[0]:
    func = label_wrapper(func)
  return (func, prob, args)


def _apply_func_with_prob(func, image, args, prob, label):
  """Apply `func` to image w/ `args` as input with probability `prob`."""
  assert isinstance(args, tuple)
  assert 'label' == inspect.getfullargspec(func)[0][1]

  # If prob is a function argument, then this randomness is being handled
  # inside the function, so make sure it is always called.
  if 'prob' in inspect.getfullargspec(func)[0]:
    prob = 1.0

  # Apply the function with probability `prob`.
  should_apply_op = tf.cast(
      tf.floor(tf.random.uniform([], dtype=tf.float32) + prob), tf.bool)
  augmented_image, augmented_label = tf.cond(
      should_apply_op,
      lambda: func(image, label, *args),
      lambda: (image, label))
  return augmented_image, augmented_label


def select_and_apply_random_policy(policies, image, label):
  """Select a random policy from `policies` and apply it to `image`."""
  policy_to_select = tf.random.uniform([], maxval=len(policies), dtype=tf.int32)
  # Note that using tf.case instead of tf.conds would result in significantly
  # larger graphs and would even break export for some larger policies.
  for (i, policy) in enumerate(policies):
    image, label = tf.cond(
        tf.equal(i, policy_to_select),
        lambda selected_policy=policy: selected_policy(image, label),
        lambda: (image, label))
  return (image, label)


def build_and_apply_autoaugment_policy(policies, image, label, ignore_label):
  """Builds a policy from the given policies passed in and applies to image.

  Args:
    policies: list of lists of tuples in the form `(func, prob, level)`, `func`
      is a string name of the augmentation function, `prob` is the probability
      of applying the `func` operation, `level` is the input argument for
      `func`.
    image: tf.Tensor that the resulting policy will be applied to.
    label: tf.Tensor that the resulting policy will be applied to.
    ignore_label: The label value which will be ignored for training and
      evaluation.

  Returns:
    A version of image that now has data augmentation applied to it based on
    the `policies` pass into the function. Additionally, returns bboxes if
    a value for them is passed in that is not None
  """
  replace_value = [128, 128, 128]

  # func is the string name of the augmentation function, prob is the
  # probability of applying the operation and level is the parameter associated
  # with the tf op.

  # tf_policies are functions that take in an image and return an augmented
  # image.
  tf_policies = []
  for policy in policies:
    tf_policy = []
    # Link string name to the correct python function and make sure the correct
    # argument is passed into that function.
    for policy_info in policy:
      policy_info = (
          list(policy_info) + [replace_value, ignore_label])

      tf_policy.append(_parse_policy_info(*policy_info))
    # Now build the tf policy that will apply the augmentation procedue
    # on image.
    def make_final_policy(tf_policy_):
      def final_policy(image_, label_):
        for func, prob, args in tf_policy_:
          image_, label_ = _apply_func_with_prob(
              func, image_, args, prob, label_)
        return image_, label_
      return final_policy
    tf_policies.append(make_final_policy(tf_policy))

  augmented_images, augmented_label = select_and_apply_random_policy(
      tf_policies, image, label)
  # If no bounding boxes were specified, then just return the images.
  return (augmented_images, augmented_label)


def distort_image_with_autoaugment(image,
                                   label,
                                   ignore_label,
                                   augmentation_name=None):
  """Applies the AutoAugment policy to `image` and `label`.

  Args:
    image: `Tensor` of shape [height, width, 3] representing an image.
    label: `Tensor` of shape [height, width, 1] representing a label.
    ignore_label: The label value which will be ignored for training and
      evaluation.
    augmentation_name: The name of the AutoAugment policy to use. See
      autoaugment_policy.py for available_policies.

  Returns:
    A tuple containing the augmented versions of `image` and `label`.

  Raises:
    ValueError: If the augmentation_name is not in available_policies.
  """
  if augmentation_name:
    available_policies = autoaugment_policy.available_policies
    if augmentation_name not in available_policies:
      raise ValueError(
          'Invalid augmentation_name: {}'.format(augmentation_name))
    policy = available_policies[augmentation_name]
    return build_and_apply_autoaugment_policy(
        policy, image, label, ignore_label)
  return image, label