File size: 14,725 Bytes
506da10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# coding=utf-8
# Copyright 2021 The Deeplab2 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""AutoAugment utility file.
Please cite or refer to the following papers:
- Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.
"Autoaugment: Learning augmentation policies from data." In CVPR, 2019.
- Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le.
"Randaugment: Practical automated data augmentation with a reduced search
space." In CVPR, 2020.
"""
import inspect
import tensorflow as tf
from deeplab2.data.preprocessing import autoaugment_policy
# This signifies the max integer that the controller RNN could predict for the
# augmentation scheme.
_MAX_LEVEL = 10.
def blend(image1, image2, factor):
"""Blends image1 and image2 using 'factor'.
Factor can be above 0.0. A value of 0.0 means only image1 is used.
A value of 1.0 means only image2 is used. A value between 0.0 and
1.0 means we linearly interpolate the pixel values between the two
images. A value greater than 1.0 "extrapolates" the difference
between the two pixel values, and we clip the results to values
between 0 and 255.
Args:
image1: An image Tensor of type uint8.
image2: An image Tensor of type uint8.
factor: A floating point value above 0.0.
Returns:
A blended image Tensor of type uint8.
"""
if factor == 0.0:
return tf.convert_to_tensor(image1)
if factor == 1.0:
return tf.convert_to_tensor(image2)
image1 = tf.cast(image1, tf.float32)
image2 = tf.cast(image2, tf.float32)
difference = image2 - image1
scaled = factor * difference
# Do addition in float.
temp = tf.cast(image1, tf.float32) + scaled
# Interpolate
if factor > 0.0 and factor < 1.0:
# Interpolation means we always stay within 0 and 255.
return tf.cast(temp, tf.uint8)
# Extrapolate:
#
# We need to clip and then cast.
return tf.cast(tf.clip_by_value(temp, 0.0, 255.0), tf.uint8)
def solarize(image, threshold=128):
# For each pixel in the image, select the pixel
# if the value is less than the threshold.
# Otherwise, subtract 255 from the pixel.
return tf.where(image < threshold, image, 255 - image)
def invert(image):
"""Inverts the image pixels."""
image = tf.convert_to_tensor(image)
return 255 - image
def color(image, factor):
"""Equivalent of PIL Color."""
degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image))
return blend(degenerate, image, factor)
def contrast(image, factor):
"""Equivalent of PIL Contrast."""
degenerate = tf.image.rgb_to_grayscale(image)
# Cast before calling tf.histogram.
degenerate = tf.cast(degenerate, tf.int32)
# Compute the grayscale histogram, then compute the mean pixel value,
# and create a constant image size of that value. Use that as the
# blending degenerate target of the original image.
hist = tf.histogram_fixed_width(degenerate, [0, 255], nbins=256)
mean = tf.reduce_sum(tf.cast(hist, tf.float32)) / 256.0
degenerate = tf.ones_like(degenerate, dtype=tf.float32) * mean
degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
degenerate = tf.image.grayscale_to_rgb(tf.cast(degenerate, tf.uint8))
return blend(degenerate, image, factor)
def brightness(image, factor):
"""Equivalent of PIL Brightness."""
degenerate = tf.zeros_like(image)
return blend(degenerate, image, factor)
def posterize(image, bits):
"""Equivalent of PIL Posterize."""
shift = 8 - bits
return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift)
def autocontrast(image):
"""Implements Autocontrast function from PIL using TF ops.
Args:
image: A 3D uint8 tensor.
Returns:
The image after it has had autocontrast applied to it and will be of type
uint8.
"""
def scale_channel(image):
"""Scale the 2D image using the autocontrast rule."""
# A possibly cheaper version can be done using cumsum/unique_with_counts
# over the histogram values, rather than iterating over the entire image.
# to compute mins and maxes.
lo = tf.cast(tf.reduce_min(image), tf.float32)
hi = tf.cast(tf.reduce_max(image), tf.float32)
# Scale the image, making the lowest value 0 and the highest value 255.
def scale_values(im):
scale = 255.0 / (hi - lo)
offset = -lo * scale
im = tf.cast(im, tf.float32) * scale + offset
im = tf.clip_by_value(im, 0.0, 255.0)
return tf.cast(im, tf.uint8)
result = tf.cond(hi > lo, lambda: scale_values(image), lambda: image)
return result
# Assumes RGB for now. Scales each channel independently
# and then stacks the result.
s1 = scale_channel(image[:, :, 0])
s2 = scale_channel(image[:, :, 1])
s3 = scale_channel(image[:, :, 2])
image = tf.stack([s1, s2, s3], 2)
return image
def sharpness(image, factor):
"""Implements Sharpness function from PIL using TF ops."""
orig_image = image
image = tf.cast(image, tf.float32)
# Make image 4D for conv operation.
image = tf.expand_dims(image, 0)
# SMOOTH PIL Kernel.
kernel = tf.constant(
[[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=tf.float32,
shape=[3, 3, 1, 1]) / 13.
# Tile across channel dimension.
kernel = tf.tile(kernel, [1, 1, 3, 1])
strides = [1, 1, 1, 1]
degenerate = tf.nn.depthwise_conv2d(
image, kernel, strides, padding='VALID', dilations=[1, 1])
degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
degenerate = tf.squeeze(tf.cast(degenerate, tf.uint8), [0])
# For the borders of the resulting image, fill in the values of the
# original image.
mask = tf.ones_like(degenerate)
padded_mask = tf.pad(mask, [[1, 1], [1, 1], [0, 0]])
padded_degenerate = tf.pad(degenerate, [[1, 1], [1, 1], [0, 0]])
result = tf.where(tf.equal(padded_mask, 1), padded_degenerate, orig_image)
# Blend the final result.
return blend(result, orig_image, factor)
def equalize(image):
"""Implements Equalize function from PIL using TF ops."""
def scale_channel(im, c):
"""Scale the data in the channel to implement equalize."""
im = tf.cast(im[:, :, c], tf.int32)
# Compute the histogram of the image channel.
histo = tf.histogram_fixed_width(im, [0, 255], nbins=256)
# For the purposes of computing the step, filter out the nonzeros.
nonzero = tf.where(tf.not_equal(histo, 0))
nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1])
step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255
def build_lut(histo, step):
# Compute the cumulative sum, shifting by step // 2
# and then normalization by step.
lut = (tf.cumsum(histo) + (step // 2)) // step
# Shift lut, prepending with 0.
lut = tf.concat([[0], lut[:-1]], 0)
# Clip the counts to be in range. This is done
# in the C code for image.point.
return tf.clip_by_value(lut, 0, 255)
# If step is zero, return the original image. Otherwise, build
# lut from the full histogram and step and then index from it.
result = tf.cond(tf.equal(step, 0),
lambda: im,
lambda: tf.gather(build_lut(histo, step), im))
return tf.cast(result, tf.uint8)
# Assumes RGB for now. Scales each channel independently
# and then stacks the result.
s1 = scale_channel(image, 0)
s2 = scale_channel(image, 1)
s3 = scale_channel(image, 2)
image = tf.stack([s1, s2, s3], 2)
return image
NAME_TO_FUNC = {
'AutoContrast': autocontrast,
'Equalize': equalize,
'Invert': invert,
'Posterize': posterize,
'Solarize': solarize,
'Color': color,
'Contrast': contrast,
'Brightness': brightness,
'Sharpness': sharpness,
}
def _enhance_level_to_arg(level):
return ((level/_MAX_LEVEL) * 1.8 + 0.1,)
def level_to_arg():
return {
'AutoContrast':
lambda level: (),
'Equalize':
lambda level: (),
'Invert':
lambda level: (),
'Posterize': lambda level: (int((level/_MAX_LEVEL) * 4),),
'Solarize': lambda level: (int((level/_MAX_LEVEL) * 256),),
'Color':
_enhance_level_to_arg,
'Contrast':
_enhance_level_to_arg,
'Brightness':
_enhance_level_to_arg,
'Sharpness':
_enhance_level_to_arg,
}
def label_wrapper(func):
"""Adds a label function argument to func and returns unchanged label."""
def wrapper(images, label, *args, **kwargs):
return func(images, *args, **kwargs), label
return wrapper
def _parse_policy_info(name, prob, level, replace_value, ignore_label):
"""Returns the function corresponding to `name` and update `level` param."""
func = NAME_TO_FUNC[name]
args = level_to_arg()[name](level)
if 'prob' in inspect.getfullargspec(func)[0]:
args = tuple([prob] + list(args))
# Add in replace arg if it is required for the function that is being called.
if 'replace' in inspect.getfullargspec(func)[0]:
# Make sure ignore_label is also in the argument.
assert 'ignore_label' in inspect.getfullargspec(func)[0]
# Make sure replace is the second from last argument
assert 'replace' == inspect.getfullargspec(func)[0][-2]
# Make sure ignore_label is the final argument
assert 'ignore_label' == inspect.getfullargspec(func)[0][-1]
args = tuple(list(args) + [replace_value, ignore_label])
# Add label as the second positional argument for the function if it does
# not already exist.
if 'label' not in inspect.getfullargspec(func)[0]:
func = label_wrapper(func)
return (func, prob, args)
def _apply_func_with_prob(func, image, args, prob, label):
"""Apply `func` to image w/ `args` as input with probability `prob`."""
assert isinstance(args, tuple)
assert 'label' == inspect.getfullargspec(func)[0][1]
# If prob is a function argument, then this randomness is being handled
# inside the function, so make sure it is always called.
if 'prob' in inspect.getfullargspec(func)[0]:
prob = 1.0
# Apply the function with probability `prob`.
should_apply_op = tf.cast(
tf.floor(tf.random.uniform([], dtype=tf.float32) + prob), tf.bool)
augmented_image, augmented_label = tf.cond(
should_apply_op,
lambda: func(image, label, *args),
lambda: (image, label))
return augmented_image, augmented_label
def select_and_apply_random_policy(policies, image, label):
"""Select a random policy from `policies` and apply it to `image`."""
policy_to_select = tf.random.uniform([], maxval=len(policies), dtype=tf.int32)
# Note that using tf.case instead of tf.conds would result in significantly
# larger graphs and would even break export for some larger policies.
for (i, policy) in enumerate(policies):
image, label = tf.cond(
tf.equal(i, policy_to_select),
lambda selected_policy=policy: selected_policy(image, label),
lambda: (image, label))
return (image, label)
def build_and_apply_autoaugment_policy(policies, image, label, ignore_label):
"""Builds a policy from the given policies passed in and applies to image.
Args:
policies: list of lists of tuples in the form `(func, prob, level)`, `func`
is a string name of the augmentation function, `prob` is the probability
of applying the `func` operation, `level` is the input argument for
`func`.
image: tf.Tensor that the resulting policy will be applied to.
label: tf.Tensor that the resulting policy will be applied to.
ignore_label: The label value which will be ignored for training and
evaluation.
Returns:
A version of image that now has data augmentation applied to it based on
the `policies` pass into the function. Additionally, returns bboxes if
a value for them is passed in that is not None
"""
replace_value = [128, 128, 128]
# func is the string name of the augmentation function, prob is the
# probability of applying the operation and level is the parameter associated
# with the tf op.
# tf_policies are functions that take in an image and return an augmented
# image.
tf_policies = []
for policy in policies:
tf_policy = []
# Link string name to the correct python function and make sure the correct
# argument is passed into that function.
for policy_info in policy:
policy_info = (
list(policy_info) + [replace_value, ignore_label])
tf_policy.append(_parse_policy_info(*policy_info))
# Now build the tf policy that will apply the augmentation procedue
# on image.
def make_final_policy(tf_policy_):
def final_policy(image_, label_):
for func, prob, args in tf_policy_:
image_, label_ = _apply_func_with_prob(
func, image_, args, prob, label_)
return image_, label_
return final_policy
tf_policies.append(make_final_policy(tf_policy))
augmented_images, augmented_label = select_and_apply_random_policy(
tf_policies, image, label)
# If no bounding boxes were specified, then just return the images.
return (augmented_images, augmented_label)
def distort_image_with_autoaugment(image,
label,
ignore_label,
augmentation_name=None):
"""Applies the AutoAugment policy to `image` and `label`.
Args:
image: `Tensor` of shape [height, width, 3] representing an image.
label: `Tensor` of shape [height, width, 1] representing a label.
ignore_label: The label value which will be ignored for training and
evaluation.
augmentation_name: The name of the AutoAugment policy to use. See
autoaugment_policy.py for available_policies.
Returns:
A tuple containing the augmented versions of `image` and `label`.
Raises:
ValueError: If the augmentation_name is not in available_policies.
"""
if augmentation_name:
available_policies = autoaugment_policy.available_policies
if augmentation_name not in available_policies:
raise ValueError(
'Invalid augmentation_name: {}'.format(augmentation_name))
policy = available_policies[augmentation_name]
return build_and_apply_autoaugment_policy(
policy, image, label, ignore_label)
return image, label
|