import gradio as gr from diffusers import StableDiffusionPipeline import torch # Tải mô hình Stable Diffusion model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained( model_id, torch_dtype=torch.float16, use_auth_token=False ) #pipe = pipe.to("cuda") # Giả sử bạn dùng GPU pipe.enable_attention_slicing() # Tối ưu RAM # Hàm tạo hình ảnh def generate_image(prompt, negative_prompt="", num_inference_steps=50, guidance_scale=7.5): image = pipe( prompt, negative_prompt=negative_prompt, num_inference_steps=int(num_inference_steps), guidance_scale=guidance_scale ).images[0] return image # Tạo giao diện với Blocks with gr.Blocks() as demo: gr.Markdown("# Text-to-Image with Stable Diffusion") gr.Markdown("Enter a prompt to generate an image.") with gr.Row(): prompt = gr.Textbox(label="Prompt", placeholder="E.g., 'A futuristic city at sunset'") negative_prompt = gr.Textbox(label="Negative Prompt (optional)", placeholder="E.g., 'blurry, low quality'") with gr.Row(): steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=50, step=1) guidance = gr.Slider(label="Guidance Scale", minimum=1, maximum=20, value=7.5, step=0.5) btn = gr.Button("Generate") output = gr.Image(label="Generated Image") btn.click( fn=generate_image, inputs=[prompt, negative_prompt, steps, guidance], outputs=output ) # Khởi chạy demo.launch()