File size: 62,259 Bytes
9b95875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
import gradio as gr
import torch
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import random
from gradio.themes.utils import colors, sizes
from gradio.themes import Base, Soft

# Create custom themes for light and dark mode
class GemmaLightTheme(Soft):
    def __init__(self):
        super().__init__(
            primary_hue=colors.blue,
            secondary_hue=colors.indigo,
            neutral_hue=colors.gray,
            spacing_size=sizes.spacing_md,
            radius_size=sizes.radius_md,
            text_size=sizes.text_md,
        )
        
class GemmaDarkTheme(Soft):
    def __init__(self):
        super().__init__(
            primary_hue=colors.blue,
            secondary_hue=colors.indigo,
            neutral_hue=colors.gray,
            spacing_size=sizes.spacing_md,
            radius_size=sizes.radius_md,
            text_size=sizes.text_md,
        )
        self.name = "gemma_dark"
        # Make it dark
        self.background_fill_primary = "#1F1F2E"
        self.background_fill_secondary = "#2A2A3C"
        self.border_color_primary = "#3A3A4C"
        self.border_color_secondary = "#4A4A5C"
        self.color_accent_soft = "#3B5FA3"
        self.color_accent = "#4B82C4"
        self.text_color = "#FFFFFF"
        self.text_color_subdued = "#CCCCCC"
        self.shadow_spread = "8px"
        self.shadow_inset = "0px 1px 2px 0px rgba(0, 0, 0, 0.1) inset"

# Helper function to handle empty values
def safe_value(value, default):
    """Return default if value is empty or None"""
    if value is None or value == "":
        return default
    return value

# Get Hugging Face token from environment variable (as fallback)
DEFAULT_HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN", None)

# Create global variables for model and tokenizer
global_model = None
global_tokenizer = None
model_loaded = False

def load_model(hf_token):
    """Load the model with the provided token"""
    global global_model, global_tokenizer, model_loaded
    
    if not hf_token:
        model_loaded = False
        return "⚠️ Please enter your Hugging Face token to use the model."
    
    try:
        # Try different model versions from smallest to largest
        model_options = [
            "google/gemma-2b-it",    # Try an instruction-tuned 2B model first (smallest)
            "google/gemma-2b",       # Try base 2B model next
            "google/gemma-7b-it",    # Try 7B instruction-tuned model
            "google/gemma-7b",       # Try base 7B model
        ]
        
        print(f"Attempting to load models with token starting with: {hf_token[:5]}...")
        
        # Try to load models in order until one works
        for model_name in model_options:
            try:
                print(f"Attempting to load model: {model_name}")
                
                # Load tokenizer
                print("Loading tokenizer...")
                global_tokenizer = AutoTokenizer.from_pretrained(
                    model_name, 
                    token=hf_token
                )
                print("Tokenizer loaded successfully")
                
                # Load model with minimal configuration
                print(f"Loading model {model_name}...")
                global_model = AutoModelForCausalLM.from_pretrained(
                    model_name,
                    torch_dtype=torch.float16,
                    device_map="auto",
                    token=hf_token
                )
                print(f"Model {model_name} loaded successfully!")
                
                model_loaded = True
                return f"βœ… Model {model_name} loaded successfully!"
            except Exception as specific_e:
                print(f"Failed to load {model_name}: {specific_e}")
                import traceback
                traceback.print_exc()
                continue
                
        # If we get here, all model options failed - try one more option with no token
        try:
            print("Trying a public model with no token requirement...")
            model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
            global_tokenizer = AutoTokenizer.from_pretrained(model_name)
            global_model = AutoModelForCausalLM.from_pretrained(
                model_name,
                torch_dtype=torch.float16,
                device_map="auto"
            )
            model_loaded = True
            return f"βœ… Fallback model {model_name} loaded successfully! Note: This is not Gemma but a fallback model."
        except Exception as fallback_e:
            print(f"Failed to load fallback model: {fallback_e}")
                
        # If we get here, all model options failed
        model_loaded = False
        return "❌ Could not load any model version. Please check your token and try again."
        
    except Exception as e:
        model_loaded = False
        error_msg = str(e)
        print(f"Error in load_model: {error_msg}")
        import traceback
        traceback.print_exc()
        
        if "401 Client Error" in error_msg:
            return "❌ Authentication failed. Please check your token and make sure you've accepted the model license on Hugging Face."
        else:
            return f"❌ Error loading model: {error_msg}"

def generate_prompt(task_type, **kwargs):
    """Generate appropriate prompts based on task type and parameters"""
    if task_type == "creative":
        style = kwargs.get("style", "")
        topic = kwargs.get("topic", "")
        return f"Write a {style} about {topic}. Be creative and engaging."
    
    elif task_type == "informational":
        format_type = kwargs.get("format_type", "")
        topic = kwargs.get("topic", "")
        return f"Write an {format_type} about {topic}. Be clear, factual, and informative."
    
    elif task_type == "summarize":
        text = kwargs.get("text", "")
        return f"Summarize the following text in a concise way:\n\n{text}"
    
    elif task_type == "translate":
        text = kwargs.get("text", "")
        target_lang = kwargs.get("target_lang", "")
        return f"Translate the following text to {target_lang}:\n\n{text}"
    
    elif task_type == "qa":
        text = kwargs.get("text", "")
        question = kwargs.get("question", "")
        return f"Based on the following text:\n\n{text}\n\nAnswer this question: {question}"
    
    elif task_type == "code_generate":
        language = kwargs.get("language", "")
        task = kwargs.get("task", "")
        return f"Write {language} code to {task}. Include helpful comments."
    
    elif task_type == "code_explain":
        code = kwargs.get("code", "")
        return f"Explain what the following code does in simple terms:\n\n```\n{code}\n```"
    
    elif task_type == "code_debug":
        code = kwargs.get("code", "")
        return f"The following code has an issue. Identify and fix the problem:\n\n```\n{code}\n```"
    
    elif task_type == "brainstorm":
        topic = kwargs.get("topic", "")
        category = kwargs.get("category", "")
        return f"Brainstorm {category} ideas about {topic}. Provide a diverse list of options."
    
    elif task_type == "content_creation":
        content_type = kwargs.get("content_type", "")
        topic = kwargs.get("topic", "")
        audience = kwargs.get("audience", "")
        return f"Create a {content_type} about {topic} for {audience}. Make it engaging and relevant."
    
    elif task_type == "email_draft":
        email_type = kwargs.get("email_type", "")
        context = kwargs.get("context", "")
        return f"Write a professional {email_type} email with the following context:\n\n{context}"
    
    elif task_type == "document_edit":
        text = kwargs.get("text", "")
        edit_type = kwargs.get("edit_type", "")
        return f"Improve the following text for {edit_type}:\n\n{text}"
    
    elif task_type == "explain":
        topic = kwargs.get("topic", "")
        level = kwargs.get("level", "")
        return f"Explain {topic} in a way that's easy to understand for a {level} audience."
    
    elif task_type == "classify":
        text = kwargs.get("text", "")
        categories = kwargs.get("categories", "")
        return f"Classify the following text into one of these categories: {categories}\n\nText: {text}\n\nCategory:"
    
    elif task_type == "data_extract":
        text = kwargs.get("text", "")
        data_points = kwargs.get("data_points", "")
        return f"Extract the following information from the text: {data_points}\n\nText: {text}\n\nExtracted information:"
    
    else:
        return kwargs.get("prompt", "")

def generate_text(prompt, max_length=1024, temperature=0.7, top_p=0.95):
    """Generate text using the Gemma model"""
    global global_model, global_tokenizer, model_loaded
    
    print(f"Generating text with params: max_length={max_length}, temp={temperature}, top_p={top_p}")
    print(f"Prompt: {prompt[:100]}...")
    
    if not model_loaded or global_model is None or global_tokenizer is None:
        print("Model not loaded")
        return "⚠️ Model not loaded. Please authenticate with your Hugging Face token."
    
    if not prompt:
        return "Please enter a prompt to generate text."
    
    try:
        # Keep generation simple to avoid errors
        inputs = global_tokenizer(prompt, return_tensors="pt").to(global_model.device)
        print(f"Input token length: {len(inputs.input_ids[0])}")
        
        # Use even simpler generation parameters
        generation_args = {
            "input_ids": inputs.input_ids,
            "max_length": min(2048, max_length + len(inputs.input_ids[0])),
            "do_sample": True,
        }
        
        # Only add temperature if not too low (can cause issues)
        if temperature >= 0.3:
            generation_args["temperature"] = temperature
            
        print(f"Generation args: {generation_args}")
        
        # Generate text
        outputs = global_model.generate(**generation_args)
        
        # Decode and return the generated text
        generated_text = global_tokenizer.decode(outputs[0], skip_special_tokens=True)
        print(f"Generated text length: {len(generated_text)}")
        return generated_text
    except Exception as e:
        error_msg = str(e)
        print(f"Generation error: {error_msg}")
        print(f"Error type: {type(e)}")
        import traceback
        traceback.print_exc()
        
        if "probability tensor" in error_msg:
            return "Error: There was a problem with the generation parameters. Try using simpler parameters or a different prompt."
        else:
            return f"Error generating text: {error_msg}"

# Create parameters UI component
def create_parameter_ui():
    with gr.Row(equal_height=True):
        with gr.Column(scale=1):
            max_length = gr.Slider(
                minimum=128, 
                maximum=2048, 
                value=1024, 
                step=64,
                label="Maximum Length",
                info="Control the maximum length of generated text",
                elem_id="max_length_slider"
            )
        with gr.Column(scale=1):
            temperature = gr.Slider(
                minimum=0.3, 
                maximum=1.5, 
                value=0.8, 
                step=0.1,
                label="Temperature",
                info="Higher values create more creative but potentially less coherent outputs",
                elem_id="temperature_slider"
            )
        with gr.Column(scale=1):
            top_p = gr.Slider(
                minimum=0.5, 
                maximum=0.99, 
                value=0.9, 
                step=0.05,
                label="Top-p",
                info="Controls diversity of generated text",
                elem_id="top_p_slider"
            )
    return [max_length, temperature, top_p]

# Create Gradio interface
with gr.Blocks(theme=GemmaLightTheme()) as demo:
    # Header with theme toggle
    with gr.Row(equal_height=True):
        with gr.Column(scale=6):
            gr.Markdown(
                """
                # πŸ€– Gemma Capabilities Demo
                
                This interactive demo showcases Google's Gemma model capabilities across different tasks.
                """
            )
        
        with gr.Column(scale=1, min_width=150):
            theme_toggle = gr.Radio(
                ["Light", "Dark"], 
                value="Light",
                label="Theme", 
                info="Switch between light and dark mode",
                elem_id="theme_toggle"
            )
    
    # Add CSS for themes and set up JavaScript for theme toggle
    gr.HTML("""
    <style>
    /* Dark theme styles */
    .dark-theme {
        --background-fill-primary: #1F1F2E !important;
        --background-fill-secondary: #2A2A3C !important;
        --border-color-primary: #3A3A4C !important;
        --border-color-secondary: #4A4A5C !important;
        --color-accent: #4B82C4 !important;
        --color-accent-soft: #3B5FA3 !important;
        --color-text: #FFFFFF !important;
        --color-subtext: #CCCCCC !important;
    }
    </style>
    
    <script>
    // This script will run after the page loads
    (function() {
        // Function to check the theme toggle and apply the appropriate theme
        function applyTheme() {
            const themeToggle = document.getElementById('theme_toggle');
            if (!themeToggle) return;
            
            const inputs = themeToggle.querySelectorAll('input');
            for (let input of inputs) {
                if (input.checked && input.value === 'Dark') {
                    document.body.classList.add('dark-theme');
                    return;
                }
            }
            
            // If we get here, light theme is selected or no selection
            document.body.classList.remove('dark-theme');
        }
        
        // Set up a mutation observer to watch for changes to the radio buttons
        function setupObserver() {
            const themeToggle = document.getElementById('theme_toggle');
            if (!themeToggle) {
                // Try again in a bit if the element isn't ready yet
                setTimeout(setupObserver, 100);
                return;
            }
            
            // Apply theme initially
            applyTheme();
            
            // Watch for changes
            const observer = new MutationObserver(function(mutations) {
                mutations.forEach(function(mutation) {
                    if (mutation.type === 'attributes' || mutation.type === 'childList') {
                        applyTheme();
                    }
                });
            });
            
            observer.observe(themeToggle, { 
                attributes: true,
                childList: true,
                subtree: true
            });
            
            // Also add click listeners to ensure theme changes on click
            const inputs = themeToggle.querySelectorAll('input');
            inputs.forEach(input => {
                input.addEventListener('change', applyTheme);
            });
        }
        
        // Start the setup when the document is ready
        if (document.readyState === 'loading') {
            document.addEventListener('DOMContentLoaded', setupObserver);
        } else {
            setupObserver();
        }
    })();
    </script>
    """)
    
    # Authentication Section
    with gr.Group(elem_id="auth_box"):
        gr.Markdown("## πŸ”‘ Authentication", elem_id="auth_heading")
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=3):
                hf_token = gr.Textbox(
                    label="Hugging Face Token", 
                    placeholder="Enter your token here...",
                    type="password",
                    value=DEFAULT_HF_TOKEN,
                    info="Get your token from https://huggingface.co/settings/tokens",
                    elem_id="hf_token_input"
                )
            
            with gr.Column(scale=1):
                auth_button = gr.Button("Authenticate", variant="primary", elem_id="auth_button")
        
        auth_status = gr.Markdown("Please authenticate to use the model.", elem_id="auth_status")
        
        def authenticate(token):
            return "⏳ Loading model... Please wait, this may take a minute."
            
        def auth_complete(token):
            result = load_model(token)
            return result
            
        # Two-step authentication to show loading message
        auth_button.click(
            fn=authenticate,
            inputs=[hf_token],
            outputs=[auth_status],
            queue=False
        ).then(
            fn=auth_complete,
            inputs=[hf_token],
            outputs=[auth_status]
        )
        
        gr.Markdown(
            """
            ### How to get a token:
            1. Go to [Hugging Face Token Settings](https://huggingface.co/settings/tokens)
            2. Create a new token with read access
            3. Make sure you've accepted the [Gemma model license](https://huggingface.co/google/gemma-3-4b-pt)
            """
        )
    
    # Main content - only show when authenticated
    with gr.Tabs(elem_id="main_tabs") as tabs:
        # Text Generation Tab
        with gr.TabItem("Text Generation", id="tab_text_gen"):
            gr.Markdown(
                """
                ## ✏️ Creative Text Generation
                
                Generate stories, poems, and other creative content. Choose a style and topic or enter your own prompt.
                """
            )
            
            with gr.Group(elem_id="text_gen_box"):
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        text_gen_type = gr.Radio(
                            ["Creative Writing", "Informational Writing", "Custom Prompt"],
                            label="Writing Type",
                            value="Creative Writing",
                            elem_id="text_gen_type"
                        )
                        
                        # Creative writing options
                        with gr.Group(visible=True, elem_id="creative_options") as creative_options:
                            style = gr.Dropdown(
                                ["short story", "poem", "script", "song lyrics", "joke"],
                                label="Style",
                                value="short story",
                                elem_id="creative_style"
                            )
                            creative_topic = gr.Textbox(
                                label="Topic",
                                placeholder="Enter a topic...",
                                value="a robot discovering emotions",
                                elem_id="creative_topic"
                            )
                        
                        # Informational writing options
                        with gr.Group(visible=False, elem_id="info_options") as info_options:
                            format_type = gr.Dropdown(
                                ["article", "summary", "explanation", "report"],
                                label="Format",
                                value="article",
                                elem_id="info_format"
                            )
                            info_topic = gr.Textbox(
                                label="Topic",
                                placeholder="Enter a topic...",
                                value="artificial intelligence",
                                elem_id="info_topic"
                            )
                        
                        # Custom prompt
                        with gr.Group(visible=False, elem_id="custom_prompt_group") as custom_prompt_group:
                            custom_prompt = gr.Textbox(
                                label="Custom Prompt",
                                placeholder="Enter your custom prompt...",
                                lines=3,
                                elem_id="custom_prompt"
                            )
                        
                        # Show/hide options based on selection
                        def update_text_gen_visibility(choice):
                            return {
                                creative_options: choice == "Creative Writing",
                                info_options: choice == "Informational Writing",
                                custom_prompt_group: choice == "Custom Prompt"
                            }
                        
                        text_gen_type.change(
                            update_text_gen_visibility,
                            inputs=text_gen_type,
                            outputs=[creative_options, info_options, custom_prompt_group]
                        )
                        
                        # Generation parameters
                        with gr.Accordion("Advanced Parameters", open=False, elem_id="text_gen_params"):
                            text_gen_params = create_parameter_ui()
                        
                        generate_text_btn = gr.Button("Generate", variant="primary", size="lg", elem_id="generate_text_btn")
                    
                    with gr.Column(scale=1):
                        text_output = gr.Textbox(
                            label="Generated Text",
                            lines=20,
                            elem_id="text_output"
                        )
                
                # Handle text generation
                def text_generation_handler(
                    gen_type, style, creative_topic, format_type, info_topic, 
                    custom_prompt, max_length, temperature, top_p
                ):
                    if gen_type == "Creative Writing":
                        style = safe_value(style, "short story")
                        creative_topic = safe_value(creative_topic, "a story")
                        prompt = generate_prompt("creative", style=style, topic=creative_topic)
                    elif gen_type == "Informational Writing":
                        format_type = safe_value(format_type, "article")
                        info_topic = safe_value(info_topic, "a topic")
                        prompt = generate_prompt("informational", format_type=format_type, topic=info_topic)
                    else:
                        prompt = safe_value(custom_prompt, "Write something interesting")
                    
                    return generate_text(prompt, max_length, temperature, top_p)
                
                generate_text_btn.click(
                    text_generation_handler,
                    inputs=[
                        text_gen_type, style, creative_topic, format_type, info_topic,
                        custom_prompt, *text_gen_params
                    ],
                    outputs=text_output
                )
                
                # Examples for text generation
                gr.Examples(
                    [
                        ["Creative Writing", "short story", "a robot learning to paint", "article", "artificial intelligence", "", 1024, 0.8, 0.9],
                        ["Creative Writing", "poem", "the beauty of mathematics", "article", "artificial intelligence", "", 768, 0.8, 0.9],
                        ["Informational Writing", "short story", "a robot discovering emotions", "article", "quantum computing", "", 1024, 0.7, 0.9],
                        ["Custom Prompt", "short story", "a robot discovering emotions", "article", "artificial intelligence", "Write a marketing email for a new smartphone with innovative AI features", 1024, 0.8, 0.9]
                    ],
                    fn=text_generation_handler,
                    inputs=[
                        text_gen_type, style, creative_topic, format_type, info_topic,
                        custom_prompt, *text_gen_params
                    ],
                    outputs=text_output,
                    label="Examples"
                )
        
        # Brainstorming Tab
        with gr.TabItem("Brainstorming", id="tab_brainstorm"):
            gr.Markdown(
                """
                ## 🧠 Brainstorming Ideas
                
                Generate creative ideas for projects, solutions, or any topic you're interested in.
                """
            )
            
            with gr.Group(elem_id="brainstorm_box"):
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        brainstorm_category = gr.Dropdown(
                            ["project", "business", "creative", "solution", "content", "feature", "product"],
                            label="Category",
                            value="project",
                            elem_id="brainstorm_category"
                        )
                        brainstorm_topic = gr.Textbox(
                            label="Topic or Problem",
                            placeholder="What would you like ideas for?",
                            value="sustainable technology",
                            elem_id="brainstorm_topic"
                        )
                        
                        with gr.Accordion("Advanced Parameters", open=False, elem_id="brainstorm_params"):
                            brainstorm_params = create_parameter_ui()
                        
                        brainstorm_btn = gr.Button("Generate Ideas", variant="primary", size="lg", elem_id="brainstorm_btn")
                    
                    with gr.Column(scale=1):
                        brainstorm_output = gr.Textbox(
                            label="Generated Ideas",
                            lines=20,
                            elem_id="brainstorm_output"
                        )
            
            def brainstorm_handler(category, topic, max_length, temperature, top_p):
                category = safe_value(category, "project")
                topic = safe_value(topic, "innovative ideas")
                prompt = generate_prompt("brainstorm", category=category, topic=topic)
                return generate_text(prompt, max_length, temperature, top_p)
            
            brainstorm_btn.click(
                brainstorm_handler,
                inputs=[brainstorm_category, brainstorm_topic, *brainstorm_params],
                outputs=brainstorm_output
            )
            
            # Examples for brainstorming
            gr.Examples(
                [
                    ["project", "educational app for children", 1024, 0.8, 0.9],
                    ["business", "eco-friendly food packaging", 1024, 0.8, 0.9],
                    ["solution", "reducing urban traffic congestion", 1024, 0.8, 0.9],
                ],
                fn=brainstorm_handler,
                inputs=[brainstorm_category, brainstorm_topic, *brainstorm_params],
                outputs=brainstorm_output,
                label="Examples"
            )
        
        # Content Creation Tab
        with gr.TabItem("Content Creation", id="tab_content"):
            gr.Markdown(
                """
                ## πŸ“ Content Creation
                
                Generate various types of content such as blog posts, social media updates, marketing copy, etc.
                """
            )
            
            with gr.Group(elem_id="content_box"):
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        content_type = gr.Dropdown(
                            ["blog post", "social media post", "marketing copy", "product description", "press release", "newsletter"],
                            label="Content Type",
                            value="blog post",
                            elem_id="content_type"
                        )
                        content_topic = gr.Textbox(
                            label="Topic",
                            placeholder="What is your content about?",
                            value="the future of artificial intelligence",
                            elem_id="content_topic"
                        )
                        content_audience = gr.Textbox(
                            label="Target Audience",
                            placeholder="Who is your audience?",
                            value="tech enthusiasts",
                            elem_id="content_audience"
                        )
                        
                        with gr.Accordion("Advanced Parameters", open=False, elem_id="content_params"):
                            content_params = create_parameter_ui()
                        
                        content_btn = gr.Button("Generate Content", variant="primary", size="lg", elem_id="content_btn")
                    
                    with gr.Column(scale=1):
                        content_output = gr.Textbox(
                            label="Generated Content",
                            lines=20,
                            elem_id="content_output"
                        )
                
                def content_creation_handler(content_type, topic, audience, max_length, temperature, top_p):
                    content_type = safe_value(content_type, "blog post")
                    topic = safe_value(topic, "interesting topic")
                    audience = safe_value(audience, "general audience")
                    prompt = generate_prompt("content_creation", content_type=content_type, topic=topic, audience=audience)
                    return generate_text(prompt, max_length, temperature, top_p)
                
                content_btn.click(
                    content_creation_handler,
                    inputs=[content_type, content_topic, content_audience, *content_params],
                    outputs=content_output
                )
                
                # Examples for content creation
                gr.Examples(
                    [
                        ["blog post", "sustainable living tips", "environmentally conscious consumers", 1536, 0.8, 0.9],
                        ["social media post", "product launch announcement", "existing customers", 512, 0.8, 0.9],
                        ["marketing copy", "new fitness app", "health-focused individuals", 1024, 0.8, 0.9],
                    ],
                    fn=content_creation_handler,
                    inputs=[content_type, content_topic, content_audience, *content_params],
                    outputs=content_output,
                    label="Examples"
                )
        
        # Email Drafting Tab
        with gr.TabItem("Email Drafting", id="tab_email"):
            gr.Markdown(
                """
                ## βœ‰οΈ Email Drafting
                
                Generate professional email drafts for various purposes.
                """
            )
            
            with gr.Group(elem_id="email_box"):
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        email_type = gr.Dropdown(
                            ["job application", "customer support", "business proposal", "networking", "follow-up", "thank you", "meeting request"],
                            label="Email Type",
                            value="job application",
                            elem_id="email_type"
                        )
                        email_context = gr.Textbox(
                            label="Context and Details",
                            placeholder="Provide necessary context for the email...",
                            lines=5,
                            value="Applying for a software developer position at Tech Solutions Inc. I have 3 years of experience with Python and JavaScript.",
                            elem_id="email_context"
                        )
                        
                        with gr.Accordion("Advanced Parameters", open=False, elem_id="email_params"):
                            email_params = create_parameter_ui()
                        
                        email_btn = gr.Button("Generate Email", variant="primary", size="lg", elem_id="email_btn")
                    
                    with gr.Column(scale=1):
                        email_output = gr.Textbox(
                            label="Generated Email",
                            lines=20,
                            elem_id="email_output"
                        )
            
            def email_draft_handler(email_type, context, max_length, temperature, top_p):
                email_type = safe_value(email_type, "professional")
                context = safe_value(context, "general communication")
                prompt = generate_prompt("email_draft", email_type=email_type, context=context)
                return generate_text(prompt, max_length, temperature, top_p)
            
            email_btn.click(
                email_draft_handler,
                inputs=[email_type, email_context, *email_params],
                outputs=email_output
            )
            
            # Examples for email drafting
            gr.Examples(
                [
                    ["job application", "Applying for a marketing specialist position at ABC Marketing. I have 5 years of experience in digital marketing.", 1024, 0.8, 0.9],
                    ["business proposal", "Proposing a collaboration between our companies for a joint product development effort.", 1024, 0.8, 0.9],
                    ["follow-up", "Following up after our meeting last Thursday about the project timeline and resources.", 1024, 0.8, 0.9],
                ],
                fn=email_draft_handler,
                inputs=[email_type, email_context, *email_params],
                outputs=email_output,
                label="Examples"
            )
        
        # Document Editing Tab
        with gr.TabItem("Document Editing", id="tab_edit"):
            gr.Markdown(
                """
                ## βœ‚οΈ Document Editing
                
                Improve the clarity, grammar, and style of your writing.
                """
            )
            
            with gr.Group(elem_id="edit_box"):
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        edit_text = gr.Textbox(
                            label="Text to Edit",
                            placeholder="Paste your text here...",
                            lines=10,
                            value="The company have been experiencing rapid growth over the past few years and is expecting to continue this trend in the coming years. They believe that it's success is due to the quality of their products and the dedicated team.",
                            elem_id="edit_text"
                        )
                        edit_type = gr.Dropdown(
                            ["grammar and clarity", "conciseness", "formal tone", "casual tone", "simplification", "academic style", "persuasive style"],
                            label="Edit Type",
                            value="grammar and clarity",
                            elem_id="edit_type"
                        )
                        
                        with gr.Accordion("Advanced Parameters", open=False, elem_id="edit_params"):
                            edit_params = create_parameter_ui()
                        
                        edit_btn = gr.Button("Edit Document", variant="primary", size="lg", elem_id="edit_btn")
                    
                    with gr.Column(scale=1):
                        edit_output = gr.Textbox(
                            label="Edited Text",
                            lines=10,
                            elem_id="edit_output"
                        )
            
            def document_edit_handler(text, edit_type, max_length, temperature, top_p):
                text = safe_value(text, "Please provide text to edit.")
                edit_type = safe_value(edit_type, "grammar and clarity")
                prompt = generate_prompt("document_edit", text=text, edit_type=edit_type)
                return generate_text(prompt, max_length, temperature, top_p)
            
            edit_btn.click(
                document_edit_handler,
                inputs=[edit_text, edit_type, *edit_params],
                outputs=edit_output
            )
        
        # Learning & Explanation Tab
        with gr.TabItem("Learning & Explanation", id="tab_explain"):
            gr.Markdown(
                """
                ## πŸŽ“ Learning & Explanation
                
                Get easy-to-understand explanations of complex topics.
                """
            )
            
            with gr.Group(elem_id="explain_box"):
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        explain_topic = gr.Textbox(
                            label="Topic to Explain",
                            placeholder="What topic would you like explained?",
                            value="quantum computing",
                            elem_id="explain_topic"
                        )
                        explain_level = gr.Dropdown(
                            ["beginner", "child", "teenager", "college student", "professional", "expert"],
                            label="Audience Level",
                            value="beginner",
                            elem_id="explain_level"
                        )
                        
                        with gr.Accordion("Advanced Parameters", open=False, elem_id="explain_params"):
                            explain_params = create_parameter_ui()
                        
                        explain_btn = gr.Button("Generate Explanation", variant="primary", size="lg", elem_id="explain_btn")
                    
                    with gr.Column(scale=1):
                        explain_output = gr.Textbox(
                            label="Explanation",
                            lines=20,
                            elem_id="explain_output"
                        )
            
            def explanation_handler(topic, level, max_length, temperature, top_p):
                topic = safe_value(topic, "an interesting concept")
                level = safe_value(level, "beginner")
                prompt = generate_prompt("explain", topic=topic, level=level)
                return generate_text(prompt, max_length, temperature, top_p)
            
            explain_btn.click(
                explanation_handler,
                inputs=[explain_topic, explain_level, *explain_params],
                outputs=explain_output
            )
            
            # Examples for explanation
            gr.Examples(
                [
                    ["blockchain technology", "beginner", 1024, 0.8, 0.9],
                    ["photosynthesis", "child", 1024, 0.8, 0.9],
                    ["machine learning", "college student", 1024, 0.8, 0.9],
                ],
                fn=explanation_handler,
                inputs=[explain_topic, explain_level, *explain_params],
                outputs=explain_output,
                label="Examples"
            )
        
        # Classification & Categorization Tab
        with gr.TabItem("Classification", id="tab_classify"):
            gr.Markdown(
                """
                ## 🏷️ Classification & Categorization
                
                Classify text into different categories or themes.
                """
            )
            
            with gr.Group(elem_id="classify_box"):
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        classify_text = gr.Textbox(
                            label="Text to Classify",
                            placeholder="Enter the text you want to classify...",
                            lines=8,
                            value="The latest smartphone features a powerful processor, excellent camera, and impressive battery life, making it a top choice for tech enthusiasts.",
                            elem_id="classify_text"
                        )
                        classify_categories = gr.Textbox(
                            label="Categories (comma-separated)",
                            placeholder="List categories separated by commas...",
                            value="technology, health, finance, entertainment, education, sports",
                            elem_id="classify_categories"
                        )
                        
                        with gr.Accordion("Advanced Parameters", open=False, elem_id="classify_params"):
                            classify_params = create_parameter_ui()
                        
                        classify_btn = gr.Button("Classify Text", variant="primary", size="lg", elem_id="classify_btn")
                    
                    with gr.Column(scale=1):
                        classify_output = gr.Textbox(
                            label="Classification Result",
                            lines=5,
                            elem_id="classify_output"
                        )
            
            def classification_handler(text, categories, max_length, temperature, top_p):
                text = safe_value(text, "Please provide text to classify.")
                categories = safe_value(categories, "general, specific, other")
                prompt = generate_prompt("classify", text=text, categories=categories)
                return generate_text(prompt, max_length, temperature, top_p)
            
            classify_btn.click(
                classification_handler,
                inputs=[classify_text, classify_categories, *classify_params],
                outputs=classify_output
            )
            
            # Examples for classification
            gr.Examples(
                [
                    ["The stock market saw significant gains today as tech companies reported strong quarterly earnings.", "technology, health, finance, entertainment, education, sports", 256, 0.5, 0.9],
                    ["The team scored in the final minutes to secure their victory in the championship game.", "technology, health, finance, entertainment, education, sports", 256, 0.5, 0.9],
                    ["The new educational app helps students master complex math concepts through interactive exercises.", "technology, health, finance, entertainment, education, sports", 256, 0.5, 0.9],
                ],
                fn=classification_handler,
                inputs=[classify_text, classify_categories, *classify_params],
                outputs=classify_output,
                label="Examples"
            )
        
        # Data Extraction Tab
        with gr.TabItem("Data Extraction", id="tab_extract"):
            gr.Markdown(
                """
                ## πŸ“Š Data Extraction
                
                Extract specific data points from text.
                """
            )
            
            with gr.Group(elem_id="extract_box"):
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        extract_text = gr.Textbox(
                            label="Text to Process",
                            placeholder="Enter the text containing data to extract...",
                            lines=10,
                            value="John Smith, born on May 15, 1985, is a software engineer at Tech Solutions Inc. He can be reached at [email protected] or (555) 123-4567. John graduated from MIT in 2007 with a degree in Computer Science.",
                            elem_id="extract_text"
                        )
                        extract_data_points = gr.Textbox(
                            label="Data Points to Extract (comma-separated)",
                            placeholder="Specify what data to extract...",
                            value="name, email, phone number, birth date, company, education",
                            elem_id="extract_data_points"
                        )
                        
                        with gr.Accordion("Advanced Parameters", open=False, elem_id="extract_params"):
                            extract_params = create_parameter_ui()
                        
                        extract_btn = gr.Button("Extract Data", variant="primary", size="lg", elem_id="extract_btn")
                    
                    with gr.Column(scale=1):
                        extract_output = gr.Textbox(
                            label="Extracted Data",
                            lines=10,
                            elem_id="extract_output"
                        )
            
            def data_extraction_handler(text, data_points, max_length, temperature, top_p):
                text = safe_value(text, "Please provide text with data to extract.")
                data_points = safe_value(data_points, "key information")
                prompt = generate_prompt("data_extract", text=text, data_points=data_points)
                return generate_text(prompt, max_length, temperature, top_p)
            
            extract_btn.click(
                data_extraction_handler,
                inputs=[extract_text, extract_data_points, *extract_params],
                outputs=extract_output
            )
            
            # Examples for data extraction
            gr.Examples(
                [
                    ["Sarah Johnson is the CEO of Green Innovations, founded in 2012. The company reported $8.5 million in revenue for 2023. Contact her at [email protected].", "name, position, company, founding year, revenue, contact", 768, 0.5, 0.9],
                    ["The new iPhone 15 Pro features a 6.1-inch display, A17 Pro chip, 48MP camera, and starts at $999 for the 128GB model.", "product name, screen size, processor, camera, price, storage capacity", 768, 0.5, 0.9],
                ],
                fn=data_extraction_handler,
                inputs=[extract_text, extract_data_points, *extract_params],
                outputs=extract_output,
                label="Examples"
            )
        
        # Text Comprehension Tab
        with gr.TabItem("Text Comprehension", id="tab_comprehension"):
            gr.Markdown(
                """
                ## πŸ“š Text Comprehension
                
                Test Gemma's ability to understand and process text. Try summarization, Q&A, or translation.
                """
            )
            
            with gr.Tabs() as comprehension_tabs:
                # Summarization
                with gr.TabItem("Summarization", id="subtab_summarize"):
                    with gr.Group(elem_id="summarize_box"):
                        with gr.Row(equal_height=True):
                            with gr.Column(scale=1):
                                summarize_text = gr.Textbox(
                                    label="Text to Summarize",
                                    placeholder="Paste text here...",
                                    lines=10,
                                    elem_id="summarize_text"
                                )
                                
                                with gr.Accordion("Advanced Parameters", open=False, elem_id="summarize_params"):
                                    summarize_params = create_parameter_ui()
                                
                                summarize_btn = gr.Button("Summarize", variant="primary", size="lg", elem_id="summarize_btn")
                            
                            with gr.Column(scale=1):
                                summary_output = gr.Textbox(
                                    label="Summary",
                                    lines=10,
                                    elem_id="summary_output"
                                )
                
                # Question Answering
                with gr.TabItem("Question Answering", id="subtab_qa"):
                    with gr.Group(elem_id="qa_box"):
                        with gr.Row(equal_height=True):
                            with gr.Column(scale=1):
                                qa_text = gr.Textbox(
                                    label="Context Text",
                                    placeholder="Paste text here...",
                                    lines=10,
                                    elem_id="qa_text"
                                )
                                qa_question = gr.Textbox(
                                    label="Question",
                                    placeholder="Ask a question about the text...",
                                    elem_id="qa_question"
                                )
                                
                                with gr.Accordion("Advanced Parameters", open=False, elem_id="qa_params"):
                                    qa_params = create_parameter_ui()
                                
                                qa_btn = gr.Button("Answer", variant="primary", size="lg", elem_id="qa_btn")
                            
                            with gr.Column(scale=1):
                                qa_output = gr.Textbox(
                                    label="Answer",
                                    lines=10,
                                    elem_id="qa_output"
                                )
                
                # Translation
                with gr.TabItem("Translation", id="subtab_translate"):
                    with gr.Group(elem_id="translate_box"):
                        with gr.Row(equal_height=True):
                            with gr.Column(scale=1):
                                translate_text = gr.Textbox(
                                    label="Text to Translate",
                                    placeholder="Enter text to translate...",
                                    lines=5,
                                    elem_id="translate_text"
                                )
                                target_lang = gr.Dropdown(
                                    ["French", "Spanish", "German", "Japanese", "Chinese", "Russian", "Arabic", "Hindi"],
                                    label="Target Language",
                                    value="French",
                                    elem_id="target_lang"
                                )
                                
                                with gr.Accordion("Advanced Parameters", open=False, elem_id="translate_params"):
                                    translate_params = create_parameter_ui()
                                
                                translate_btn = gr.Button("Translate", variant="primary", size="lg", elem_id="translate_btn")
                            
                            with gr.Column(scale=1):
                                translation_output = gr.Textbox(
                                    label="Translation",
                                    lines=5,
                                    elem_id="translation_output"
                                )
        
        # Code Capabilities Tab
        with gr.TabItem("Code Capabilities", id="tab_code"):
            gr.Markdown(
                """
                ## πŸ’» Code Generation and Understanding
                
                Test Gemma's ability to generate, explain, and debug code in various programming languages.
                """
            )
            
            with gr.Tabs() as code_tabs:
                # Code Generation
                with gr.TabItem("Code Generation", id="subtab_code_gen"):
                    with gr.Group(elem_id="code_gen_box"):
                        with gr.Row(equal_height=True):
                            with gr.Column(scale=1):
                                code_language = gr.Dropdown(
                                    ["Python", "JavaScript", "Java", "C++", "HTML/CSS", "SQL", "Bash"],
                                    label="Programming Language",
                                    value="Python",
                                    elem_id="code_language"
                                )
                                code_task = gr.Textbox(
                                    label="Coding Task",
                                    placeholder="Describe what you want the code to do...",
                                    value="Create a function to find prime numbers up to n",
                                    elem_id="code_task"
                                )
                                
                                with gr.Accordion("Advanced Parameters", open=False, elem_id="code_gen_params"):
                                    code_gen_params = create_parameter_ui()
                                
                                code_gen_btn = gr.Button("Generate Code", variant="primary", size="lg", elem_id="code_gen_btn")
                            
                            with gr.Column(scale=1):
                                code_output = gr.Code(
                                    label="Generated Code",
                                    language="python",
                                    elem_id="code_output"
                                )
                    
                    def code_gen_handler(language, task, max_length, temperature, top_p):
                        language = safe_value(language, "Python")
                        task = safe_value(task, "write a hello world program")
                        prompt = generate_prompt("code_generate", language=language, task=task)
                        result = generate_text(prompt, max_length, temperature, top_p)
                        return result
                    
                    # Update language in code output component
                    def update_code_language(lang):
                        lang_map = {
                            "Python": "python",
                            "JavaScript": "javascript",
                            "Java": "java",
                            "C++": "cpp",
                            "HTML/CSS": "html",
                            "SQL": "sql",
                            "Bash": "bash"
                        }
                        return gr.Code.update(language=lang_map.get(lang, "python"))
                    
                    code_language.change(update_code_language, inputs=code_language, outputs=code_output)
                    
                    code_gen_btn.click(
                        code_gen_handler,
                        inputs=[code_language, code_task, *code_gen_params],
                        outputs=code_output
                    )
                
                # Code Explanation
                with gr.TabItem("Code Explanation", id="subtab_code_explain"):
                    with gr.Group(elem_id="code_explain_box"):
                        with gr.Row(equal_height=True):
                            with gr.Column(scale=1):
                                code_to_explain = gr.Code(
                                    label="Code to Explain",
                                    language="python",
                                    value="def quicksort(arr):\n    if len(arr) <= 1:\n        return arr\n    pivot = arr[len(arr) // 2]\n    left = [x for x in arr if x < pivot]\n    middle = [x for x in arr if x == pivot]\n    right = [x for x in arr if x > pivot]\n    return quicksort(left) + middle + quicksort(right)",
                                    elem_id="code_to_explain"
                                )
                                
                                with gr.Accordion("Advanced Parameters", open=False, elem_id="explain_code_params"):
                                    explain_code_params = create_parameter_ui()
                                
                                explain_code_btn = gr.Button("Explain Code", variant="primary", size="lg", elem_id="explain_code_btn")
                            
                            with gr.Column(scale=1):
                                code_explanation = gr.Textbox(
                                    label="Explanation",
                                    lines=10,
                                    elem_id="code_explanation"
                                )
                    
                    def explain_code_handler(code, max_length, temperature, top_p):
                        code = safe_value(code, "print('Hello, world!')")
                        prompt = generate_prompt("code_explain", code=code)
                        return generate_text(prompt, max_length, temperature, top_p)
                    
                    explain_code_btn.click(
                        explain_code_handler,
                        inputs=[code_to_explain, *explain_code_params],
                        outputs=code_explanation
                    )
                
                # Code Debugging
                with gr.TabItem("Code Debugging", id="subtab_code_debug"):
                    with gr.Group(elem_id="code_debug_box"):
                        with gr.Row(equal_height=True):
                            with gr.Column(scale=1):
                                code_to_debug = gr.Code(
                                    label="Code to Debug",
                                    language="python",
                                    value="def fibonacci(n):\n    if n <= 0:\n        return []\n    elif n == 1:\n        return [0]\n    elif n == 2:\n        return [0, 1]\n    \n    fib = [0, 1]\n    for i in range(2, n):\n        fib.append(fib[i-1] - fib[i-2])  # Bug is here (should be +)\n    \n    return fib\n\nprint(fibonacci(10))",
                                    elem_id="code_to_debug"
                                )
                                
                                with gr.Accordion("Advanced Parameters", open=False, elem_id="debug_code_params"):
                                    debug_code_params = create_parameter_ui()
                                
                                debug_code_btn = gr.Button("Debug Code", variant="primary", size="lg", elem_id="debug_code_btn")
                            
                            with gr.Column(scale=1):
                                debug_result = gr.Textbox(
                                    label="Debugging Result",
                                    lines=10,
                                    elem_id="debug_result"
                                )
                    
                    def debug_code_handler(code, max_length, temperature, top_p):
                        code = safe_value(code, "print('Hello, world!')")
                        prompt = generate_prompt("code_debug", code=code)
                        return generate_text(prompt, max_length, temperature, top_p)
                    
                    debug_code_btn.click(
                        debug_code_handler,
                        inputs=[code_to_debug, *debug_code_params],
                        outputs=debug_result
                    )
    
    # Footer
    with gr.Group(elem_id="footer"):
        gr.Markdown(
            """
            ## About Gemma
            
            Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. 
            It's designed to be efficient and accessible for various applications.
            
            [Learn more about Gemma](https://huggingface.co/google/gemma-3-4b-pt)
            
            <div style="text-align: center; margin-top: 20px; padding: 10px;">
                <p>© 2023 Gemma Capabilities Demo | Made with ❀️ using Gradio</p>
            </div>
            """
        )

    # Add CSS for better styling
    demo.load(js="""
    () => {
        // Add custom CSS for better styling
        const style = document.createElement('style');
        style.textContent = `
            .tabs {
                box-shadow: 0 2px 5px rgba(0,0,0,0.1);
                border-radius: 10px;
                overflow: hidden;
            }
            
            /* Make buttons more noticeable */
            button.primary {
                transition: transform 0.2s, box-shadow 0.2s;
            }
            
            button.primary:hover {
                transform: translateY(-2px);
                box-shadow: 0 4px 8px rgba(0,0,0,0.2);
            }
            
            /* Add hover effect to tabs */
            .tab-nav button {
                transition: background-color 0.3s;
            }
            
            /* Make textboxes more readable */
            textarea, .input-box {
                font-size: 16px !important;
            }
            
            /* Improve box styling */
            .container {
                border-radius: 10px;
                overflow: hidden;
            }
        `;
        document.head.appendChild(style);
    }
    """)

    # Load default token if available
    if DEFAULT_HF_TOKEN:
        demo.load(lambda x: authenticate(DEFAULT_HF_TOKEN), outputs=auth_status).then(
            lambda x: auth_complete(DEFAULT_HF_TOKEN), outputs=auth_status
        )

demo.launch(share=False)