Spaces:
Running
Running
File size: 31,630 Bytes
74dd1f4 018670b 9b95875 74dd1f4 9b95875 74dd1f4 9b95875 f664cc2 13af073 74dd1f4 c1d34f4 9b95875 f664cc2 9b95875 74dd1f4 c1d34f4 f664cc2 c1d34f4 f664cc2 9b95875 c1d34f4 f664cc2 9b95875 9b0c0fa b820bc7 f664cc2 c1d34f4 f664cc2 c1d34f4 f664cc2 c1d34f4 9b95875 f664cc2 9b0c0fa f664cc2 9b0c0fa f664cc2 9b0c0fa f664cc2 c1d34f4 9b95875 f664cc2 74dd1f4 f664cc2 9b95875 74dd1f4 9b95875 13af073 9b0c0fa 9b95875 9b0c0fa 74dd1f4 9b95875 f664cc2 9b95875 74dd1f4 9b95875 74dd1f4 9b95875 74dd1f4 9b0c0fa 13af073 9b0c0fa f664cc2 13af073 9b95875 9b0c0fa f664cc2 9b95875 b820bc7 9b0c0fa 9b95875 b820bc7 9b0c0fa f664cc2 b820bc7 9b95875 9b0c0fa 9b95875 b820bc7 9b95875 9b0c0fa 9b95875 74dd1f4 c1d34f4 45c882e b820bc7 13af073 f664cc2 9b0c0fa f664cc2 13af073 9b0c0fa f664cc2 9b0c0fa 74dd1f4 f664cc2 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 13af073 9b95875 f664cc2 9b95875 9b0c0fa 9b95875 f664cc2 9b0c0fa f664cc2 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 13af073 9b0c0fa f664cc2 13af073 9b95875 9b0c0fa f664cc2 9b95875 f664cc2 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa f664cc2 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa f664cc2 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa 9b95875 9b0c0fa f664cc2 9b0c0fa f664cc2 9b0c0fa f664cc2 9b0c0fa 9b95875 9b0c0fa f664cc2 9b0c0fa f664cc2 9b0c0fa f664cc2 9b0c0fa f664cc2 9b0c0fa f664cc2 9b0c0fa f664cc2 9b0c0fa f664cc2 9b0c0fa f664cc2 9b0c0fa f664cc2 9b95875 9b0c0fa f664cc2 9b95875 f664cc2 13af073 f664cc2 13af073 f664cc2 9b0c0fa f664cc2 9b0c0fa 13af073 f664cc2 9b0c0fa f664cc2 9b0c0fa f664cc2 13af073 74dd1f4 9b95875 f664cc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import gradio as gr
import torch
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import random
import traceback # Keep traceback for detailed error logging
# Helper function to handle empty values
def safe_value(value, default):
"""Return default if value is empty or None"""
if value is None or value == "":
return default
return value
# Get Hugging Face token from environment variable (as fallback)
DEFAULT_HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN", None)
# Create global variables for model and tokenizer
global_model = None
global_tokenizer = None
model_loaded = False
loaded_model_name = "None" # Keep track of which model was loaded
def load_model(hf_token):
"""Load the model with the provided token"""
global global_model, global_tokenizer, model_loaded, loaded_model_name
# --- FIX: Use gr.update() for visibility ---
initial_tabs_update = gr.update(visible=False) # Generic update targeted by outputs list
if not hf_token:
model_loaded = False
loaded_model_name = "None"
return "β οΈ Please enter your Hugging Face token.", initial_tabs_update
try:
model_options = [
"google/gemma-2b-it", "google/gemma-7b-it",
"google/gemma-2b", "google/gemma-7b",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0"
]
print(f"Attempting loading with token: {hf_token[:5]}...")
loaded_successfully = False
for model_name in model_options:
try:
print(f"\n--- Attempting: {model_name} ---")
is_gemma = "gemma" in model_name.lower()
current_token = hf_token if is_gemma else None
print("Loading tokenizer...")
global_tokenizer = AutoTokenizer.from_pretrained(model_name, token=current_token)
print("Loading model...")
global_model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=torch.float16,
device_map="auto", token=current_token
)
print(f"Success: {model_name}")
model_loaded = True
loaded_model_name = model_name
loaded_successfully = True
# --- FIX: Use gr.update() for visibility ---
tabs_update = gr.update(visible=True) # Generic update targeted by outputs list
status_msg = f"β
Model '{model_name}' loaded!"
if "tinyllama" in model_name.lower():
status_msg = f"β
Fallback '{model_name}' loaded!"
return status_msg, tabs_update
except ImportError as ie:
print(f"Import Error ({model_name}): {ie}. Check dependencies.")
continue
except Exception as e:
print(f"Failed ({model_name}): {e}")
if "401" in str(e) or "logged in" in str(e) and is_gemma: print("Auth error likely.")
continue
if not loaded_successfully:
model_loaded = False; loaded_model_name = "None"
return "β Failed to load any model. Check token/license/deps/network.", initial_tabs_update
except Exception as e:
model_loaded = False; loaded_model_name = "None"
print(f"Outer load error: {e}"); traceback.print_exc()
if "401" in str(e) or "logged in" in str(e): return "β Auth failed.", initial_tabs_update
else: return f"β Unexpected load error: {e}", initial_tabs_update
def generate_prompt(task_type, **kwargs):
"""Generate appropriate prompts based on task type and parameters"""
prompts = {
"creative": "Write a {style} about {topic}. Be creative and engaging.",
"informational": "Write an {format_type} about {topic}. Be clear, factual, and informative.",
"summarize": "Summarize the following text concisely:\n\n{text}",
"translate": "Translate the following text to {target_lang}:\n\n{text}",
"qa": "Based on the following text:\n\n{text}\n\nAnswer this question: {question}",
"code_generate": "Write {language} code to {task}. Include comments explaining the code.",
"code_explain": "Explain the following {language} code in simple terms:\n\n```\n{code}\n```",
"code_debug": "Identify and fix the potential bug(s) in the following {language} code. Explain the fix:\n\n```\n{code}\n```",
"brainstorm": "Brainstorm {category} ideas about {topic}. Provide a diverse list.",
"content_creation": "Create a {content_type} about {topic} targeting {audience}. Make it engaging.",
"email_draft": "Draft a professional {email_type} email regarding the following:\n\n{context}",
"document_edit": "Improve the following text for {edit_type}:\n\n{text}",
"explain": "Explain {topic} clearly for a {level} audience.",
"classify": "Classify the following text into one of these categories: {categories}\n\nText: {text}\n\nCategory:",
"data_extract": "Extract the following data points ({data_points}) from the text below:\n\nText: {text}\n\nExtracted Data:",
}
prompt_template = prompts.get(task_type)
if prompt_template:
try:
keys_in_template = [k[1:-1] for k in prompt_template.split('{') if '}' in k for k in [k.split('}')[0]]]
final_kwargs = {key: kwargs.get(key, f"[{key}]") for key in keys_in_template}
final_kwargs.update(kwargs) # Add extras
return prompt_template.format(**final_kwargs)
except KeyError as e:
print(f"Warning: Missing key for prompt template '{task_type}': {e}")
return kwargs.get("prompt", f"Generate text based on: {kwargs}")
else:
return kwargs.get("prompt", "Generate text based on the input.")
def generate_text(prompt, max_new_tokens=1024, temperature=0.7, top_p=0.9):
"""Generate text using the loaded model"""
global global_model, global_tokenizer, model_loaded, loaded_model_name
print(f"\n--- Generating Text ---")
# ... (rest of the function remains the same as the previous valid version) ...
print(f"Model: {loaded_model_name}")
print(f"Params: max_new_tokens={max_new_tokens}, temp={temperature}, top_p={top_p}")
print(f"Prompt (start): {prompt[:150]}...")
if not model_loaded or global_model is None or global_tokenizer is None:
return "β οΈ Model not loaded. Please authenticate first."
if not prompt:
return "β οΈ Please enter a prompt or configure a task."
try:
chat_prompt = prompt # Default to raw prompt
if loaded_model_name and ("it" in loaded_model_name.lower() or "instruct" in loaded_model_name.lower() or "chat" in loaded_model_name.lower()):
if "gemma" in loaded_model_name.lower():
chat_prompt = f"<start_of_turn>user\n{prompt}<end_of_turn>\n<start_of_turn>model\n"
elif "tinyllama" in loaded_model_name.lower():
chat_prompt = f"<|system|>\nYou are a helpful assistant.</s>\n<|user|>\n{prompt}</s>\n<|assistant|>\n"
else: # Generic instruction format
chat_prompt = f"User: {prompt}\nAssistant:"
inputs = global_tokenizer(chat_prompt, return_tensors="pt", add_special_tokens=True).to(global_model.device)
input_length = inputs.input_ids.shape[1]
print(f"Input token length: {input_length}")
effective_max_new_tokens = min(int(max_new_tokens), 2048)
eos_token_id = global_tokenizer.eos_token_id
if eos_token_id is None:
print("Warning: eos_token_id is None, using default 50256.")
eos_token_id = 50256
generation_args = {
"input_ids": inputs.input_ids,
"attention_mask": inputs.attention_mask,
"max_new_tokens": effective_max_new_tokens,
"do_sample": True,
"temperature": float(temperature),
"top_p": float(top_p),
"pad_token_id": eos_token_id
}
print(f"Generation args: {generation_args}")
with torch.no_grad():
outputs = global_model.generate(**generation_args)
generated_ids = outputs[0, input_length:]
generated_text = global_tokenizer.decode(generated_ids, skip_special_tokens=True)
print(f"Generated text length: {len(generated_text)}")
print(f"Generated text (start): {generated_text[:150]}...")
return generated_text.strip()
except Exception as e:
error_msg = str(e)
print(f"Generation error: {error_msg}")
traceback.print_exc()
if "CUDA out of memory" in error_msg:
return f"β Error: CUDA out of memory. Try reducing 'Max New Tokens' or use a smaller model."
elif "probability tensor contains nan" in error_msg or "invalid value encountered" in error_msg:
return f"β Error: Generation failed (invalid probability). Adjust Temp/Top-P or prompt."
else:
return f"β Error during text generation: {error_msg}"
# --- UI Components & Layout ---
def create_parameter_ui():
# ... (function remains the same) ...
with gr.Accordion("β¨ Generation Parameters", open=False):
with gr.Row():
max_new_tokens = gr.Slider(minimum=64, maximum=2048, value=512, step=64, label="Max New Tokens", info="Max tokens to generate.")
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature", info="Controls randomness.")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P", info="Nucleus sampling probability.")
return [max_new_tokens, temperature, top_p]
# Language map (defined once)
lang_map = {"Python": "python", "JavaScript": "javascript", "Java": "java", "C++": "cpp", "HTML": "html", "CSS": "css", "SQL": "sql", "Bash": "bash", "Rust": "rust", "Other": "plaintext"}
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True, title="Gemma Capabilities Demo") as demo:
# Header
# ... (remains the same) ...
gr.Markdown(
"""
<div style="text-align: center; margin-bottom: 20px;"><h1><span style="font-size: 1.5em;">π€</span> Gemma Capabilities Demo</h1>
<p>Explore text generation with Google's Gemma models (or a fallback).</p>
<p style="font-size: 0.9em;"><a href="https://huggingface.co/google/gemma-7b-it" target="_blank">[Accept Gemma License Here]</a></p></div>"""
)
# --- Authentication ---
# ... (remains the same) ...
with gr.Group():
gr.Markdown("### π Authentication")
with gr.Row():
with gr.Column(scale=4):
hf_token = gr.Textbox(label="Hugging Face Token", placeholder="Paste token (hf_...)", type="password", value=DEFAULT_HF_TOKEN, info="Needed for Gemma models.")
with gr.Column(scale=1, min_width=150):
auth_button = gr.Button("Load Model", variant="primary")
auth_status = gr.Markdown("βΉοΈ Enter token & click 'Load Model'. May take time.")
gr.Markdown(
"**Token Info:** Get from [HF Settings](https://huggingface.co/settings/tokens) (read access). Ensure Gemma license is accepted.",
elem_id="token-info"
)
# --- Main Content Tabs ---
# Define tabs instance first
with gr.Tabs(elem_id="main_tabs", visible=False) as tabs:
# ... (All TabItem definitions remain the same as the previous working version) ...
# --- Text Generation Tab ---
with gr.TabItem("π Creative & Informational"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Configure Task")
text_gen_type = gr.Radio(["Creative Writing", "Informational Writing", "Custom Prompt"], label="Writing Type", value="Creative Writing")
with gr.Group(visible=True) as creative_options:
style = gr.Dropdown(["short story", "poem", "script", "song lyrics", "joke", "dialogue"], label="Style", value="short story")
creative_topic = gr.Textbox(label="Topic", placeholder="e.g., a lonely astronaut", value="a robot discovering music", lines=2)
with gr.Group(visible=False) as info_options:
format_type = gr.Dropdown(["article", "summary", "explanation", "report", "comparison"], label="Format", value="article")
info_topic = gr.Textbox(label="Topic", placeholder="e.g., quantum physics basics", value="AI impact on healthcare", lines=2)
with gr.Group(visible=False) as custom_prompt_group:
custom_prompt = gr.Textbox(label="Custom Prompt", placeholder="Enter full prompt...", lines=5)
text_gen_params = create_parameter_ui()
generate_text_btn = gr.Button("Generate Text", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Generated Output")
text_output = gr.Textbox(label="Result", lines=25, interactive=False, show_copy_button=True)
def update_text_gen_visibility(choice):
return { creative_options: gr.update(visible=choice == "Creative Writing"),
info_options: gr.update(visible=choice == "Informational Writing"),
custom_prompt_group: gr.update(visible=choice == "Custom Prompt") }
text_gen_type.change(update_text_gen_visibility, text_gen_type, [creative_options, info_options, custom_prompt_group], queue=False)
def text_gen_click(gen_type, style, c_topic, fmt_type, i_topic, custom_pr, *params):
task_map = {"Creative Writing": ("creative", {}), "Informational Writing": ("informational", {}), "Custom Prompt": ("custom", {})}
task_type, kwargs = task_map.get(gen_type, ("custom", {}))
if task_type == "creative": kwargs = {"style": safe_value(style, "story"), "topic": safe_value(c_topic, "[topic]")}
elif task_type == "informational": kwargs = {"format_type": safe_value(fmt_type, "article"), "topic": safe_value(i_topic, "[topic]")}
else: kwargs = {"prompt": safe_value(custom_pr, "Write something.")}
final_prompt = generate_prompt(task_type, **kwargs)
return generate_text(final_prompt, *params)
generate_text_btn.click(text_gen_click, [text_gen_type, style, creative_topic, format_type, info_topic, custom_prompt, *text_gen_params], text_output)
gr.Examples( examples=[ ["Creative Writing", "poem", "sound of rain", "", "", "", 512, 0.7, 0.9],
["Informational Writing", "", "", "explanation", "photosynthesis", "", 768, 0.6, 0.9],
["Custom Prompt", "", "", "", "", "Dialogue: cat and dog discuss humans.", 512, 0.8, 0.95] ],
inputs=[text_gen_type, style, creative_topic, format_type, info_topic, custom_prompt, *text_gen_params[:3]],
outputs=text_output, label="Try examples...")
# --- Brainstorming Tab ---
with gr.TabItem("π§ Brainstorming"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
brainstorm_category = gr.Dropdown(["project", "business", "creative", "solution", "content", "feature", "product name"], label="Category", value="project")
brainstorm_topic = gr.Textbox(label="Topic/Problem", placeholder="e.g., reducing plastic waste", value="unique mobile app ideas", lines=3)
brainstorm_params = create_parameter_ui()
brainstorm_btn = gr.Button("Generate Ideas", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Generated Ideas")
brainstorm_output = gr.Textbox(label="Result", lines=25, interactive=False, show_copy_button=True)
def brainstorm_click(category, topic, *params):
prompt = generate_prompt("brainstorm", category=safe_value(category, "project"), topic=safe_value(topic, "ideas"))
return generate_text(prompt, *params)
brainstorm_btn.click(brainstorm_click, [brainstorm_category, brainstorm_topic, *brainstorm_params], brainstorm_output)
gr.Examples([ ["solution", "engaging online learning", 768, 0.8, 0.9],
["business", "eco-friendly subscription boxes", 768, 0.75, 0.9],
["creative", "fantasy novel themes", 512, 0.85, 0.95] ],
inputs=[brainstorm_category, brainstorm_topic, *brainstorm_params[:3]], outputs=brainstorm_output, label="Try examples...")
# --- Code Tab ---
with gr.TabItem("π» Code"):
with gr.Tabs():
with gr.TabItem("Generate"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Setup")
code_lang_gen = gr.Dropdown(list(lang_map.keys())[:-1], label="Language", value="Python")
code_task = gr.Textbox(label="Task", placeholder="e.g., function for factorial", value="Python class for calculator", lines=4)
code_gen_params = create_parameter_ui()
code_gen_btn = gr.Button("Generate Code", variant="primary")
with gr.Column(scale=1):
gr.Markdown("#### Generated Code")
code_output = gr.Code(label="Result", language="python", lines=25, interactive=False)
def gen_code_click(lang, task, *params):
prompt = generate_prompt("code_generate", language=safe_value(lang, "Python"), task=safe_value(task, "hello world"))
result = generate_text(prompt, *params); # Basic extraction...
if "```" in result: parts = result.split("```"); block = parts[1] if len(parts)>1 else ''; return block.split('\n',1)[1].strip() if '\n' in block and block.split('\n',1)[0].strip().lower() == lang.lower() else block.strip()
return result.strip()
def update_gen_lang_display(lang): return gr.Code.update(language=lang_map.get(lang, "plaintext"))
code_lang_gen.change(update_gen_lang_display, code_lang_gen, code_output, queue=False)
code_gen_btn.click(gen_code_click, [code_lang_gen, code_task, *code_gen_params], code_output)
gr.Examples([["JS", "email validation", 768, 0.6, 0.9], ["SQL", "users > 30", 512, 0.5, 0.8], ["HTML", "portfolio", 1024, 0.7, 0.9]], [code_lang_gen, code_task, *code_gen_params[:3]], code_output, label="Try...") # Abbreviated examples
with gr.TabItem("Explain"):
with gr.Row():
with gr.Column(scale=1): gr.Markdown("#### Setup"); code_lang_explain = gr.Dropdown(list(lang_map.keys()), label="Language", value="Python"); code_to_explain = gr.Code(label="Code to Explain", language="python", lines=15); explain_code_params = create_parameter_ui(); explain_code_btn = gr.Button("Explain Code", variant="primary")
with gr.Column(scale=1): gr.Markdown("#### Explanation"); code_explanation = gr.Textbox(label="Result", lines=25, interactive=False, show_copy_button=True)
def explain_code_click(lang, code, *params): code_content = safe_value(code['code'] if isinstance(code, dict) else code, "#"); prompt = generate_prompt("code_explain", language=safe_value(lang, "code"), code=code_content); return generate_text(prompt, *params)
def update_explain_lang_display(lang): return gr.Code.update(language=lang_map.get(lang, "plaintext"))
code_lang_explain.change(update_explain_lang_display, code_lang_explain, code_to_explain, queue=False)
explain_code_btn.click(explain_code_click, [code_lang_explain, code_to_explain, *explain_code_params], code_explanation)
with gr.TabItem("Debug"):
with gr.Row():
with gr.Column(scale=1): gr.Markdown("#### Setup"); code_lang_debug = gr.Dropdown(list(lang_map.keys()), label="Language", value="Python"); code_to_debug = gr.Code(label="Buggy Code", language="python", lines=15, value="def avg(nums):\n # Potential div by zero\n return sum(nums)/len(nums)"); debug_code_params = create_parameter_ui(); debug_code_btn = gr.Button("Debug Code", variant="primary")
with gr.Column(scale=1): gr.Markdown("#### Debugging Analysis"); debug_result = gr.Textbox(label="Result", lines=25, interactive=False, show_copy_button=True)
def debug_code_click(lang, code, *params): code_content = safe_value(code['code'] if isinstance(code, dict) else code, "#"); prompt = generate_prompt("code_debug", language=safe_value(lang, "code"), code=code_content); return generate_text(prompt, *params)
def update_debug_lang_display(lang): return gr.Code.update(language=lang_map.get(lang, "plaintext"))
code_lang_debug.change(update_debug_lang_display, code_lang_debug, code_to_debug, queue=False)
debug_code_btn.click(debug_code_click, [code_lang_debug, code_to_debug, *debug_code_params], debug_result)
# --- Comprehension Tab ---
with gr.TabItem("π Comprehension"):
with gr.Tabs():
with gr.TabItem("Summarize"):
with gr.Row():
with gr.Column(scale=1): gr.Markdown("#### Setup"); summarize_text = gr.Textbox(label="Text", lines=15, placeholder="Paste..."); summarize_params = create_parameter_ui(); summarize_btn = gr.Button("Summarize", variant="primary")
with gr.Column(scale=1): gr.Markdown("#### Summary"); summary_output = gr.Textbox(label="Result", lines=15, interactive=False, show_copy_button=True)
def summarize_click(text, *params): prompt = generate_prompt("summarize", text=safe_value(text,"[text]")); p = list(params); p[0]=min(max(int(p[0]),64),512); return generate_text(prompt, *p)
summarize_btn.click(summarize_click, [summarize_text, *summarize_params], summary_output)
with gr.TabItem("Q & A"):
with gr.Row():
with gr.Column(scale=1): gr.Markdown("#### Setup"); qa_text = gr.Textbox(label="Context", lines=10, placeholder="Paste context..."); qa_question = gr.Textbox(label="Question", placeholder="Ask..."); qa_params = create_parameter_ui(); qa_btn = gr.Button("Answer", variant="primary")
with gr.Column(scale=1): gr.Markdown("#### Answer"); qa_output = gr.Textbox(label="Result", lines=10, interactive=False, show_copy_button=True)
def qa_click(text, q, *params): prompt = generate_prompt("qa", text=safe_value(text,"[ctx]"), question=safe_value(q,"[q]")); p = list(params); p[0]=min(max(int(p[0]),32),256); return generate_text(prompt, *p)
qa_btn.click(qa_click, [qa_text, qa_question, *qa_params], qa_output)
with gr.TabItem("Translate"):
with gr.Row():
with gr.Column(scale=1): gr.Markdown("#### Setup"); translate_text = gr.Textbox(label="Text", lines=8, placeholder="Enter text..."); target_lang = gr.Dropdown(["French", "Spanish", "German", "Japanese", "Chinese", "Russian", "Arabic", "Hindi", "Portuguese", "Italian"], label="To", value="French"); translate_params = create_parameter_ui(); translate_btn = gr.Button("Translate", variant="primary")
with gr.Column(scale=1): gr.Markdown("#### Translation"); translation_output = gr.Textbox(label="Result", lines=8, interactive=False, show_copy_button=True)
def translate_click(text, lang, *params): prompt = generate_prompt("translate", text=safe_value(text,"[text]"), target_lang=safe_value(lang,"French")); p = list(params); p[0]=max(int(p[0]),64); return generate_text(prompt, *p)
translate_btn.click(translate_click, [translate_text, target_lang, *translate_params], translation_output)
# --- More Tasks Tab ---
with gr.TabItem("π οΈ More Tasks"):
with gr.Tabs():
with gr.TabItem("Content"): # Abbreviated names for brevity
with gr.Row():
with gr.Column(scale=1): gr.Markdown("#### Setup"); content_type = gr.Dropdown(["blog outline", "tweet", "linkedin post", "email subject", "product desc", "press release intro"], label="Type", value="blog outline"); content_topic = gr.Textbox(label="Topic", value="sustainable travel", lines=2); content_audience = gr.Textbox(label="Audience", value="millennials"); content_params = create_parameter_ui(); content_btn = gr.Button("Generate", variant="primary")
with gr.Column(scale=1): gr.Markdown("#### Result"); content_output = gr.Textbox(lines=20, interactive=False, show_copy_button=True)
def content_click(t, top, aud, *p): prompt = generate_prompt("content_creation", content_type=safe_value(t,"text"), topic=safe_value(top,"[topic]"), audience=safe_value(aud,"[audience]")); return generate_text(prompt, *p)
content_btn.click(content_click, [content_type, content_topic, content_audience, *content_params], content_output)
with gr.TabItem("Email"):
with gr.Row():
with gr.Column(scale=1): gr.Markdown("#### Setup"); email_type = gr.Dropdown(["job inquiry", "meeting request", "follow-up", "thank you", "support reply", "sales outreach"], label="Type", value="meeting request"); email_context = gr.Textbox(label="Context", lines=5, value="Meet next week re: project X. Tue/Wed PM?"); email_params = create_parameter_ui(); email_btn = gr.Button("Generate", variant="primary")
with gr.Column(scale=1): gr.Markdown("#### Draft"); email_output = gr.Textbox(lines=20, interactive=False, show_copy_button=True)
def email_click(t, ctx, *p): prompt = generate_prompt("email_draft", email_type=safe_value(t,"email"), context=safe_value(ctx,"[context]")); return generate_text(prompt, *p)
email_btn.click(email_click, [email_type, email_context, *email_params], email_output)
with gr.TabItem("Edit"):
with gr.Row():
with gr.Column(scale=1): gr.Markdown("#### Setup"); edit_text = gr.Textbox(label="Text", lines=10, placeholder="Paste..."); edit_type = gr.Dropdown(["clarity", "grammar/spelling", "concise", "formal", "casual", "simplify"], label="Improve For", value="clarity"); edit_params = create_parameter_ui(); edit_btn = gr.Button("Edit", variant="primary")
with gr.Column(scale=1): gr.Markdown("#### Edited"); edit_output = gr.Textbox(lines=10, interactive=False, show_copy_button=True)
def edit_click(txt, et, *p): prompt = generate_prompt("document_edit", text=safe_value(txt,"[text]"), edit_type=safe_value(et,"clarity")); p_list = list(p); p_list[0] = max(int(p_list[0]), len(safe_value(txt,"").split()) + 64); return generate_text(prompt, *p_list)
edit_btn.click(edit_click, [edit_text, edit_type, *edit_params], edit_output)
with gr.TabItem("Classify"):
with gr.Row():
with gr.Column(scale=1): gr.Markdown("#### Setup"); classify_text = gr.Textbox(label="Text", lines=8, value="Sci-fi movie explores AI."); classify_categories = gr.Textbox(label="Categories", value="Tech, Entertainment, Science"); classify_params = create_parameter_ui(); classify_btn = gr.Button("Classify", variant="primary")
with gr.Column(scale=1): gr.Markdown("#### Category"); classify_output = gr.Textbox(lines=2, interactive=False, show_copy_button=True)
def classify_click(txt, cats, *p): prompt = generate_prompt("classify", text=safe_value(txt,"[text]"), categories=safe_value(cats,"c1,c2")); p_list = list(p); p_list[0] = min(max(int(p_list[0]),16),128); raw=generate_text(prompt,*p_list); lines=raw.split('\n');last=lines[-1].strip();poss=[c.strip().lower() for c in cats.split(',')]; return last if last.lower() in poss else raw
classify_btn.click(classify_click, [classify_text, classify_categories, *classify_params], classify_output)
with gr.TabItem("Extract"):
with gr.Row():
with gr.Column(scale=1): gr.Markdown("#### Setup"); extract_text = gr.Textbox(label="Source", lines=10, value="Order #123 by Jane ([email protected]). Total: $99."); extract_data_points = gr.Textbox(label="Extract", value="order num, name, email, total"); extract_params = create_parameter_ui(); extract_btn = gr.Button("Extract", variant="primary")
with gr.Column(scale=1): gr.Markdown("#### Data"); extract_output = gr.Textbox(lines=10, interactive=False, show_copy_button=True)
def extract_click(txt, pts, *p): prompt = generate_prompt("data_extract", text=safe_value(txt,"[text]"), data_points=safe_value(pts,"info")); return generate_text(prompt, *p)
extract_btn.click(extract_click, [extract_text, extract_data_points, *extract_params], extract_output)
# --- Authentication Handler & Footer ---
footer_status = gr.Markdown("...", elem_id="footer-status-md") # Placeholder for footer
# Define authentication handler AFTER tabs is defined
def handle_auth(token):
# --- FIX: Use gr.update() for visibility ---
yield "β³ Authenticating & loading model...", gr.update(visible=False)
# Call the actual model loading function
status_message, tabs_update_obj = load_model(token) # Get the update object
yield status_message, tabs_update_obj # Yield the object
# Define footer update handler
def update_footer_status(status_text): # Updates footer based on global state
# --- FIX: Use gr.update() for Markdown ---
return gr.update(value=f"""
<hr><div style="text-align: center; font-size: 0.9em; color: #777;">
<p>Powered by Hugging Face π€ Transformers & Gradio. Model: <strong>{loaded_model_name if model_loaded else 'None'}</strong>.</p>
<p>Review outputs carefully. Models may generate inaccurate information.</p></div>""")
# Link button click to the handler
auth_button.click(
fn=handle_auth,
inputs=hf_token,
outputs=[auth_status, tabs], # Target auth_status and the tabs instance
queue=True
)
# Update footer whenever auth status text changes
auth_status.change(
fn=update_footer_status,
inputs=auth_status, # Trigger based on auth_status text
outputs=footer_status, # Update the footer_status Markdown
queue=False
)
# Initial footer update on load
demo.load(
fn=update_footer_status,
inputs=auth_status, # Use initial auth_status text
outputs=footer_status,
queue=False
)
# --- Launch App ---
demo.queue().launch(share=False) |