import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load the fine-tuned model and tokenizer model = AutoModelForSeq2SeqLM.from_pretrained("Codellama-7b-Instruct") tokenizer = AutoTokenizer.from_pretrained("Codellama-7b-Instruct") # Define a function to generate a response from the model def generate_response(input_text): inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0]) return response # Create a Gradio interface interface = gr.Interface(generate_response, input_type="text", output_type="text", title="Codellama-7b-Instruct Chatbot", description="A chatbot powered by the Codellama-7b-Instruct model.", article="This chatbot is fine-tuned on a dataset of instructional text and can be used to generate responses to natural language prompts.", theme="default", share=True, enable_chat=True) # Launch the interface on a local server interface.launch()