Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,12 @@
|
|
1 |
-
import
|
2 |
import gradio as gr
|
3 |
-
from faster_whisper import WhisperModel
|
4 |
|
5 |
-
|
6 |
-
model_size = 'large-v3'
|
7 |
-
|
8 |
-
def load_model(_model_size):
|
9 |
-
global model_size, model
|
10 |
-
|
11 |
-
if model_size != _model_size:
|
12 |
-
model_size = _model_size
|
13 |
-
|
14 |
-
if torch.cuda.is_available():
|
15 |
-
model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
16 |
-
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
|
17 |
-
else:
|
18 |
-
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
19 |
-
|
20 |
-
def speech_to_text(audio_file, _model_size):
|
21 |
-
global model_size, model
|
22 |
-
|
23 |
-
load_model(_model_size)
|
24 |
-
|
25 |
-
with torch.no_grad():
|
26 |
-
segments, info = model.transcribe(
|
27 |
-
audio_file,
|
28 |
-
language='ja',
|
29 |
-
beam_size=5,
|
30 |
-
vad_filter=True,
|
31 |
-
without_timestamps=False,
|
32 |
-
)
|
33 |
-
|
34 |
-
text = ''
|
35 |
-
for segment in segments:
|
36 |
-
text += f"{segment.start:.2f}\t{segment.end:.2f}\t{segment.text}\n"
|
37 |
-
|
38 |
-
return text
|
39 |
-
|
40 |
-
load_model(model_size)
|
41 |
|
42 |
gr.Interface(
|
43 |
-
fn=speech_to_text,
|
44 |
inputs=[
|
45 |
gr.Audio(sources="upload", type="filepath"),
|
46 |
gr.Dropdown(value=model_size, choices=["tiny", "base", "small", "medium", "large", "large-v2", "large-v3"]),
|
47 |
],
|
48 |
-
outputs="text").launch()
|
|
|
1 |
+
import fn
|
2 |
import gradio as gr
|
|
|
3 |
|
4 |
+
fn.load_model('large-v3')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
gr.Interface(
|
7 |
+
fn=fn.speech_to_text,
|
8 |
inputs=[
|
9 |
gr.Audio(sources="upload", type="filepath"),
|
10 |
gr.Dropdown(value=model_size, choices=["tiny", "base", "small", "medium", "large", "large-v2", "large-v3"]),
|
11 |
],
|
12 |
+
outputs=["text", "text"]).launch()
|