File size: 8,964 Bytes
c793218
 
 
 
 
 
 
 
 
 
 
161cc5a
 
c793218
 
161cc5a
 
 
c793218
 
 
 
 
 
 
 
 
b0c010e
 
 
c793218
f61c88d
4b8c16b
c793218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161cc5a
 
 
 
 
c793218
 
 
 
 
 
 
 
 
 
 
 
161cc5a
c793218
 
 
 
 
 
161cc5a
c793218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cb07ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c793218
bf9121d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from fastapi import FastAPI, UploadFile, Form, HTTPException
from pydantic import BaseModel
import uvicorn
from fastapi.responses import JSONResponse
from typing import Dict
import hashlib
from openai import OpenAI
from dotenv import load_dotenv
from fastapi.middleware.cors import CORSMiddleware
from firebase_admin import firestore
import json
import re
import pandas as pd
import google.generativeai as genai
from google.generativeai import GenerativeModel
import os
load_dotenv()
client = OpenAI(api_key=os.getenv('DEEPSEEK_API_KEY'), base_url="https://api.deepseek.com",)

# Initialize Gemini LLM
# load_dotenv()
# Google_key = os.getenv("GOOGLE_API_KEY")
# print(str(Google_key))
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
model = genai.GenerativeModel("gemini-2.0-flash")
import firebase_admin
from firebase_admin import credentials
cred_dic = os.getenv("Firebase_cred")

cred_dict = json.loads(cred_dic)

cred = credentials.Certificate(cred_dict)
firebase_admin.initialize_app(cred)

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)
def generate_df():
    data = []
    db = firestore.client()
    docs = db.collection("test_results").get()
    for doc in docs:
         doc_data = doc.to_dict()
         doc_data['id'] = doc.id
         data.append(doc_data)
    df = pd.DataFrame(data)
    return df

def generate_feedback(email, test_id):
    df = generate_df()
    df_email = df[df['email'] == email]
    df_test_id = df_email[df_email['id'] == test_id]
    if not df_test_id.empty:
        response = df_test_id['responses'].values[0]
        feedback = model.generate_content(f"""You are an experienced tutor analyzing a student's test responses to provide constructive feedback. Below is the student's test history in JSON format. Your task is to:

Identify Strengths: Highlight areas where the student performed well, demonstrating a strong understanding of the concepts.

Identify Weaknesses: Point out areas where the student struggled or made consistent errors, indicating gaps in understanding.

Provide Actionable Suggestions: Offer specific advice on how the student can improve their performance in future tests.

Encourage and Motivate: End with positive reinforcement to keep the student motivated.
Test History:{str(response)} """)
        return feedback.text
    else:
        print("No test results found for this id")
def generate_overall_feedback(email):
    df = generate_df()
    df_email = df[df['email'] == email]
    if not df_email.empty:
        response = df_email['responses'].values 
        feedback = model.generate_content(f"""You are an experienced tutor analyzing a student's test responses to provide constructive feedback. Below is the student's test history in list format. Your task is to:
                                          Identify Strengths: Highlight areas where the student performed well, demonstrating a strong understanding of the concepts.

Identify Weaknesses: Point out areas where the student struggled or made consistent errors, indicating gaps in understanding.

Provide Actionable Suggestions: Offer specific advice on how the student can improve their performance in future tests.

Encourage and Motivate: End with positive reinforcement to keep the student motivated.

Test History:{str(response)} """)
        return feedback.text
    else:
        print("Please try again with a valid email")
    




@app.post("/get_single_feedback")
async def get_single_feedback(email: str, test_id: str):
    feedback = generate_feedback(email, test_id)
    return JSONResponse(content={"feedback": feedback})

@app.post("/get_overall_feedback")
async def get_overall_feedback(email: str):
    feedback = generate_overall_feedback(email)
    return JSONResponse(content={"feedback": feedback})

@app.post("/get_strong_weak_topics")
async def get_strong_weak_topics(email: str):   
    df = generate_df()
    df_email = df[df['email'] == email]
    if len(df_email)<10:
        return JSONResponse(content={"message": "Please attempt atleast 10 tests to enable this feature"})

    elif len(df)>=10:
        response = df_email['responses'].values[:10]
        # Assuming response is a list of responses
        formatted_data = str(response)  # Convert response to a string format suitable for the API call
        section_info = {
            'filename': 'student_performance',
            'schema': {
                'weak_topics': ['Topic#1', 'Topic#2', '...'],
                'strong_topics': ['Topic#1', 'Topic#2', '...']
            }
        }
        
        # Generate response using the client
        completion = client.chat.completions.create(
            model="deepseek-chat",
            response_format={"type": "json_object"},
            messages=[
                {
                    "role": "system",
                    "content": f"""You are an Educational Performance Analyst focusing on {section_info['filename'].replace('_', ' ')}.
                    Analyze the provided student responses to identify and categorize topics into 'weak' and 'strong' based on their performance. Try to give
                    high level topics like algebra, trignometry, geometry etc in your response.
                    Do not add any explanations, introduction, or comments - return ONLY valid JSON.
                    """
                },
                {
                    "role": "user",
                    "content": f"""
                    Here is the raw data for {section_info['filename']}:
                    
                    {formatted_data}
                    
                    Convert this data into JSON that matches this schema:
                    {json.dumps(section_info['schema'], indent=2)}
                    """
                }
            ],
            temperature=0.0
        )
        
        # Extract the JSON content from the completion object
        strong_weak_topics = completion.choices[0].message.content  # Access the content attribute directly
        
        return JSONResponse(content=json.loads(strong_weak_topics))
    else:
        return JSONResponse(content={"error": "No test results found for this email"})

@app.post("/generate_flashcards")
async def generate_flashcards(email: str):
    df = generate_df()
    df_email = df[df['email'] == email]

    if len(df_email) < 10:
        return JSONResponse(content={"message": "Please attempt at least 10 tests to enable flashcard generation."})

    # Step 1: Get the weak topics via DeepSeek
    response = df_email['responses'].values[:10]
    formatted_data = str(response)

    schema = {
        'weak_topics': ['Topic#1', 'Topic#2', '...'],
        'strong_topics': ['Topic#1', 'Topic#2', '...']
    }

    completion = client.chat.completions.create(
        model="deepseek-chat",
        response_format={"type": "json_object"},
        messages=[
            {
                "role": "system",
                "content": f"""You are an Educational Performance Analyst focusing on student performance.
                Analyze the provided student responses to identify and categorize topics into 'weak' and 'strong' based on their performance.
                Do not add any explanations - return ONLY valid JSON."""
            },
            {
                "role": "user",
                "content": f"""
                Here is the raw data:
                {formatted_data}

                Convert this data into JSON that matches this schema:
                {json.dumps(schema, indent=2)}
                """
            }
        ],
        temperature=0.0
    )

    # Extract weak topics
    strong_weak_json = json.loads(completion.choices[0].message.content)
    weak_topics = strong_weak_json.get("weak_topics", [])

    if not weak_topics:
        return JSONResponse(content={"message": "Could not extract weak topics."})

    # Step 2: Generate flashcards using Gemini
    topic_str = ", ".join(weak_topics)
    flashcard_prompt = f"""Create 5 concise, simple, straightforward and distinct Anki cards to study the following topic, each with a front and back.
Avoid repeating the content in the front on the back of the card. Avoid explicitly referring to the author or the article.
Use the following format:
Front: [front section of card 1]
Back: [back section of card 1]
...
The topics: {topic_str}
"""

    flashcard_response = model.generate_content(flashcard_prompt)

    # Step 3: Parse Gemini response into JSON format
    flashcards_raw = flashcard_response.text.strip()
    flashcard_pattern = re.findall(r"Front:\s*(.*?)\nBack:\s*(.*?)(?=\nFront:|\Z)", flashcards_raw, re.DOTALL)

    flashcards = [{"Front": front.strip(), "Back": back.strip()} for front, back in flashcard_pattern]

    return JSONResponse(content=flashcards)


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)