Update README.md
Browse files
README.md
CHANGED
@@ -25,18 +25,17 @@ Thus, this research provides a [database](https://doi.org/10.5281/zenodo.8092621
|
|
25 |
|
26 |
## Cite as
|
27 |
```
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
}
|
40 |
```
|
41 |
|
42 |
## Requirements
|
@@ -45,5 +44,4 @@ matplotlib==3.10.0
|
|
45 |
numpy==1.26.4
|
46 |
tensorflow==2.17.1
|
47 |
pillow==11.1.0
|
48 |
-
gradio=5.12.0
|
49 |
-
re==2.2.1
|
|
|
25 |
|
26 |
## Cite as
|
27 |
```
|
28 |
+
@INPROCEEDINGS{10500989,
|
29 |
+
author={Fl贸rez-Gonz谩lez, Andr茅s J. and Viteri-Mera, Carlos A. and Achicanoy-Mart铆nez, Wilson O.},
|
30 |
+
booktitle={2024 18th European Conference on Antennas and Propagation (EuCAP)},
|
31 |
+
title={Fast Indoor Radio Propagation Prediction using Deep Learning},
|
32 |
+
year={2024},
|
33 |
+
volume={},
|
34 |
+
number={},
|
35 |
+
pages={1-5},
|
36 |
+
keywords={Deep learning;Indoor radio communication;Microprocessors;Wireless networks;Training data;Computer architecture;Software;Propagation;U-Net;radio map estimation;cell association estimation;WLAN},
|
37 |
+
doi={10.23919/EuCAP60739.2024.10500989}
|
38 |
+
}
|
|
|
39 |
```
|
40 |
|
41 |
## Requirements
|
|
|
44 |
numpy==1.26.4
|
45 |
tensorflow==2.17.1
|
46 |
pillow==11.1.0
|
47 |
+
gradio=5.12.0
|
|