File size: 24,531 Bytes
4738a88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import time
import os, random
import torch
import math, pickle
from tqdm import tqdm
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
import torch.nn as nn
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from torch.utils.data.distributed import DistributedSampler
import logging
from data import gigaspeech
from models import voicecraft

from .trainer_utils import DistributedDynamicBatchSampler, StatefulDistributedSampler, AverageMeter, print_model_info
from .optim import ScaledAdam, Eden


class Trainer:
    
    def __init__(self, args, world_size, rank):
        self.start_time = time.time()
        self.args = args
        self.world_size, self.rank = world_size, rank
        self.device = torch.device(f"cuda:{rank}" if torch.cuda.is_available() else "cpu")
        if self.rank == 0:
            self.writer = SummaryWriter(args.exp_dir)
        self.seed_everything(seed=self.args.seed)
        self.meters = self._setup_meters()

        self.progress, self.total_progress = self._setup_progress()

        self.model, self.trainables, self.optim_states, self.scheduler_states = self._setup_models()

        self.train_dataset_length, self.train_sampler, self.train_loader, self.valid_loader = self._setup_dataloader()
        if self.args.num_steps != None:
            self.total_step = self.args.num_steps
            self.args.num_epochs = math.ceil(self.total_step / math.floor(self.train_dataset_length / self.args.batch_size)) if not self.args.dynamic_batching else None
        else:
            self.total_step = int(math.floor(self.train_dataset_length / self.args.batch_size))*self.args.num_epochs

        self.optimizer, self.scheduler = self._setup_optimizer()
        self.scaler = torch.cuda.amp.GradScaler()
        self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[self.rank], find_unused_parameters=False)
        
        if self.rank == 0:
            self.early_stop_accu_steps = 0
            if self.args.dynamic_batching:
                logging.info(f"max number of tokens per GPU in a training batch: {self.args.max_num_tokens}, max number of tokens per GPU in a inference batch: {self.args.val_max_num_tokens}")
            else:
                logging.info(f"batch size (summed over all GPUs): {self.args.batch_size}")

    def train(self):
        flag = True
        skip_flag = False
        data_start_time = time.time()
        while flag:
            self.train_sampler.set_epoch(self.progress['epoch'])
            for i, batch in enumerate(self.train_loader):
                data_end_time = time.time()
                self.model.train()
                if self.progress['step'] > self.total_step:
                    flag = False
                    self.validate_and_save()
                    if self.rank == 0:
                        self.writer.close()
                    break
                if isinstance(self.scheduler, Eden):
                    self.scheduler.step_epoch(self.progress['step']//self.args.pseudo_epoch_size + 1)
                if self.args.optimizer_name == "ScaledAdam":
                    cur_lr = self.scheduler.get_last_lr()[0]
                else:
                    lrs = [param_group['lr'] for param_group in self.optimizer.param_groups]
                    assert lrs[0] == lrs[1]
                    cur_lr = lrs[0]

                if self.rank == 0 and self.progress['step'] % self.args.tb_write_every_n_steps == 0:
                    self.writer.add_scalar("train/lr", cur_lr, self.progress['step'])
                    self.wandb.log({"train/lr": cur_lr}, step=self.progress['step'])

                all_inds = list(range(len(batch['y'])))
                sum_losses = 0
                sum_top10acc = 0
                sum_ntoken = 0
                sum_top10acc_cbi = [0 for _ in range(self.args.n_codebooks)]
                for j in range(self.args.gradient_accumulation_steps):
                    cur_ind = all_inds[j::self.args.gradient_accumulation_steps]
                    cur_batch = {key: batch[key][cur_ind] for key in batch}
                    with torch.cuda.amp.autocast(dtype=torch.float16 if self.args.precision=="float16" else torch.float32):
                        out = self.model(cur_batch)

                    record_loss = out['loss'].detach().to(self.rank) 
                    top10acc = out['top10acc'].to(self.rank)
                    effective_ntoken = out['effective_ntoken'].to(self.rank)
                    is_nan = torch.tensor(int(torch.isnan(record_loss).any()), dtype=torch.float32, device=self.rank)
                    
                    dist.all_reduce(record_loss, op=dist.ReduceOp.SUM)
                    dist.all_reduce(top10acc, op=dist.ReduceOp.SUM)
                    dist.all_reduce(effective_ntoken, op=dist.ReduceOp.SUM)
                    dist.all_reduce(is_nan, op=dist.ReduceOp.SUM)
                    
                    # check if loss is nan
                    if is_nan.item() > 0:
                        logging.info(f"loss at step {self.progress['step']} is nan, therefore skip this batch")
                        skip_flag = True
                        continue

                    sum_losses += record_loss.item()
                    sum_top10acc += top10acc.item()
                    sum_ntoken += effective_ntoken.item()

                    if 'top10acc_by_codebook' in out:
                        for cb in range(self.args.n_codebooks):
                            top10acc_cbi = out['top10acc_by_codebook'][cb]
                            dist.all_reduce(top10acc_cbi, op=dist.ReduceOp.SUM)
                            sum_top10acc_cbi[cb] += top10acc_cbi.item()
                        
                    if self.rank == 0:
                        average_loss = sum_losses / sum_ntoken
                        average_top10acc = sum_top10acc / sum_ntoken
                        self.meters['train_loss'].update(average_loss, batch['x'].shape[0]*self.world_size)
                        self.meters['train_top10acc'].update(average_top10acc, batch['x'].shape[0]*self.world_size)
                        self.meters['train_top10acc'].update(average_top10acc, batch['x'].shape[0]*self.world_size)
                        average_top10acc_cbi = [sum_top10acc_cbi[cb] / sum_ntoken * self.args.n_codebooks for cb in range(self.args.n_codebooks)]
                        for cb in range(self.args.n_codebooks):
                            self.meters[f'train_top10acc_cb{cb+1}'].update(average_top10acc_cbi[cb], batch['x'].shape[0]*self.world_size)

                        if self.progress['step'] % self.args.tb_write_every_n_steps == 0:
                            self.writer.add_scalar('train/loss', average_loss, self.progress['step'])
                            self.writer.add_scalar('train/top10acc', average_top10acc, self.progress['step'])
                            self.writer.add_scalar("train/ntokens", sum_ntoken, self.progress['step'])
                            for cb in range(self.args.n_codebooks):
                                self.writer.add_scalar(f'train/top10acc_cb{cb+1}', average_top10acc_cbi[cb], self.progress['step'])

                    if self.args.optimizer_name == "ScaledAdam":
                        self.scaler.scale(out['loss']).backward() 
                    else:
                        self.scaler.scale(out['loss']/out['effective_ntoken']).backward()

                if skip_flag:
                    self.optimizer.zero_grad()
                    skip_flag = False
                    continue

                if self.args.optimizer_name != "ScaledAdam":
                    self.scaler.unscale_(self.optimizer)
                    torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.gradient_clip_val)
                self.scaler.step(self.optimizer)
                self.scaler.update()

                self.optimizer.zero_grad()

                if self.args.optimizer_name == "ScaledAdam":
                    self.scheduler.step_batch(self.progress['step'])
                else:
                    self.scheduler.step()

                if self.rank == 0:
                    self.meters['data_time'].update(data_end_time - data_start_time)
                    self.meters['train_time'].update(time.time() - data_end_time)
                    if self.progress['step'] % self.args.tb_write_every_n_steps == 0:
                        self.writer.add_scalar("train/data_time", data_end_time - data_start_time, self.progress['step'])
                        self.writer.add_scalar("train/train_time", time.time() - data_end_time, self.progress['step'])
                        

                    # logging
                    if self.progress['step'] % self.args.print_every_n_steps == 0:
                        log_out = {}
                        log_out['cur_epoch'] = f"{self.progress['epoch']}/{self.args.num_epochs}" if self.args.num_epochs is not None else f"{self.progress['epoch']}"
                        log_out['cur_step'] = f"{int(self.progress['cur_step']+1)}"
                        log_out['total_step'] = f"{self.progress['step']}/{self.args.num_steps}"
                        log_out['lr'] = f"{cur_lr:.7f}"
                        log_out['ntokens'] = f"{sum_ntoken}"
                        for key in self.meters:
                            if self.meters[key].val != 0 or self.meters[key].avg != 0:
                                log_out[key] = f"{self.meters[key].val:.4f} ({self.meters[key].avg:.4f})" if isinstance(self.meters[key].val, float) else f"{self.meters[key].val}"
                        logging.info(log_out)
                        if np.isnan(self.meters['train_loss'].avg):
                            logging.warning("training diverged...")
                            raise RuntimeError("training diverged...")

                # validation and save models
                if self.progress['step'] % self.args.val_every_n_steps == 0:
                    dist.barrier()
                    self.validate_and_save()

                self.progress['step'] += 1
                self.progress['cur_step'] += 1

                data_start_time = time.time()
            self.progress['epoch'] += 1
            self.progress['cur_step'] = 0 # reset cur_step to be 0
        dist.destroy_process_group()

    def validate_and_save(self):
        self.model.eval()
        
        score = self.validate(self.valid_loader)

        if self.rank == 0:
            if self.args.early_stop_threshold > 0:
                if self.progress['best_score'] - score < self.args.early_stop_threshold:
                    self.early_stop_accu_steps += self.args.val_every_n_steps
                    if self.early_stop_accu_steps >= self.args.early_stop_step-1:
                        logging.info(f"early stop based on self.args.early_stop_threshold: {self.args.early_stop_threshold}, and self.args.early_stop_step: {self.args.early_stop_step}")
                        logging.info(f"best validation score at step: {self.progress['best_step']}, and the score is {self.progress['best_score']:.4f}")
                        dist.destroy_process_group()
                        raise RuntimeError("early stop")
                else:
                    self.early_stop_accu_steps = 0

            if (score < self.progress['best_score']):
                self.progress['best_step'] = self.progress['step']
                self.progress['best_score'] = score
                save_path = os.path.join(self.args.exp_dir,"best_bundle.pth")
                torch.save(
                    {
                        "model": self.model.module.state_dict(),
                        "optimizer":  self.optimizer.state_dict(),
                        "scheduler": self.scheduler.state_dict(),
                        "config": self.args,
                        "phn2num": self.train_loader.dataset.phn2num
                    },save_path
                )
                logging.info(f"save *best* models at {save_path} at global step {self.progress['step']}")
            self._save_progress()
            save_path = os.path.join(self.args.exp_dir,"bundle.pth")
            torch.save(
                {
                    "model": self.model.module.state_dict(),
                    "optimizer":  self.optimizer.state_dict(),
                    "scheduler": self.scheduler.state_dict(),
                    "config": self.args,
                    "phn2num": self.train_loader.dataset.phn2num
                    },save_path
            )
            logging.info(f"save models, indices, acc and other statistics at {save_path} and {self.args.exp_dir}/progress.pkl at global step {self.progress['step']}")

        dist.barrier()

    def validate(self, valid_loader=None, hide_progress=True):
        if valid_loader == None:
            valid_loader = self.valid_loader
        self.model.eval()

        start_val_time = time.time()
        sum_losses = 0
        sum_top10acc = 0
        sum_ntoken = 0
        sum_top10acc_cbi = [0 for _ in range(self.args.n_codebooks)]

        with torch.no_grad():
            for i, batch in enumerate(tqdm(valid_loader, disable=hide_progress)):
                out = self.model(batch)
                sum_losses += out['loss']
                sum_top10acc += out['top10acc']
                sum_ntoken += out['effective_ntoken']
                if 'top10acc_by_codebook' in out:
                    for cb in range(self.args.n_codebooks):
                        sum_top10acc_cbi[cb] += out['top10acc_by_codebook'][cb]
                        
        dist.all_reduce(sum_losses, op=dist.ReduceOp.SUM)
        dist.all_reduce(sum_top10acc, op=dist.ReduceOp.SUM)
        dist.all_reduce(sum_ntoken, op=dist.ReduceOp.SUM)
        
        if 'top10acc_by_codebook' in out:
            for cb in range(self.args.n_codebooks):
                dist.all_reduce(sum_top10acc_cbi[cb], op=dist.ReduceOp.SUM)
        
        if self.rank == 0:
            val_loss = sum_losses / sum_ntoken
            val_top10acc = sum_top10acc / sum_ntoken
            # logging
            self.meters['val_loss'].update(val_loss)
            logging.info(f"val loss: {val_loss:.5f}")
            self.writer.add_scalar("val/loss", val_loss, self.progress['step'])

            self.meters['val_top10acc'].update(val_top10acc)
            logging.info(f"val top10acc: {val_top10acc:.5f}")
            self.writer.add_scalar("val/top10acc", val_top10acc, self.progress['step'])
            for cb in range(self.args.n_codebooks):
                average_top10acc_cbi = sum_top10acc_cbi[cb] / sum_ntoken * self.args.n_codebooks
                self.meters[f'val_top10acc_cb{cb+1}'].update(average_top10acc_cbi)
                self.writer.add_scalar(f'val/top10acc_cb{cb+1}', average_top10acc_cbi, self.progress['step'])

            logging.info(f"validation takes: {time.time() - start_val_time:.2f}s")
            logging.info(f"Step [{self.progress['step']}/{self.total_step}]\t Time elapsed {(time.time() - self.start_time)/3600.:.2f}h, Val Loss: {val_loss:.4f}, Val Top10Acc: {val_top10acc:.4f}")
            return val_loss.item()
        else:
            return None

    def _setup_meters(self):
        meters = {}
        meter_names = ['train_loss', 'val_loss', 'train_top10acc', 'val_top10acc', 'data_time', 'train_time']
        meter_names += ['train_dur_loss', 'train_dur_acc', 'val_dur_loss', 'val_dur_acc']
        meter_names += [f'train_top10acc_cb{cb+1}' for cb in range(self.args.n_codebooks)]
        meter_names += [f'val_top10acc_cb{cb+1}' for cb in range(self.args.n_codebooks)]
        for name in meter_names:
            meters[name] = AverageMeter()
        return meters
    def _setup_progress(self):
        progress = {}
        progress['best_step'] = 1
        progress['best_score'] = np.inf # this records loss value
        progress['step'] = 1
        progress['epoch'] = 1
        progress['cur_step'] = 0 # step in the current epoch, for resuming the sampler
        total_progress = []
        # if self.args.resume or self.args.validate:
        if self.args.resume:
            progress_pkl = "%s/progress.pkl" % self.args.exp_dir
            with open(progress_pkl, "rb") as f:
                total_progress = pickle.load(f)
                progress['best_step'], progress['best_score'], progress['step'], progress['epoch'], progress['cur_step'], _ = total_progress[-1]
            if self.rank == 0:
                logging.info("\nResume training from:")
                logging.info("  epoch = %s" % progress['epoch'])
                logging.info("  cur_step = %s" % progress['cur_step'])
                logging.info("  step = %s" % progress['step'])
                logging.info("  best_step = %s" % progress['best_step'])
                logging.info("  best_score = %s" % progress['best_score'])
        return progress, total_progress
    
    def _save_progress(self):
        self.total_progress.append([self.progress['best_step'], self.progress['best_score'], int(self.progress['step']+1), self.progress['epoch'], int(self.progress['cur_step']+1), time.time() - self.start_time])
        with open("%s/progress.pkl" % self.args.exp_dir, "wb") as f:
            pickle.dump(self.total_progress, f)

    def _setup_dataloader(self):
        assert self.args.dataset == 'gigaspeech', "only gigaspeech is supported for now"
        train_dataset, val_dataset = gigaspeech.dataset(self.args, 'train'), gigaspeech.dataset(self.args, 'validation')
        
        if self.args.dynamic_batching:
            train_sampler = DistributedDynamicBatchSampler(train_dataset, self.args, num_replicas=self.world_size, rank=self.rank, shuffle=True, seed=self.args.seed, drop_last=True, lengths_list=train_dataset.lengths_list, verbose=True, epoch=0)
            valid_sampler = DistributedDynamicBatchSampler(val_dataset, self.args, num_replicas=self.world_size, rank=self.rank, shuffle=True, seed=self.args.seed, drop_last=True, lengths_list=val_dataset.lengths_list, verbose=True, epoch=0)
        else:
            train_sampler = StatefulDistributedSampler(train_dataset, self.args.batch_size//self.world_size, num_replicas=self.world_size, rank=self.rank, shuffle=True, seed=self.args.seed, drop_last=True)
            valid_sampler = DistributedSampler(val_dataset, num_replicas=self.world_size, rank=self.rank, shuffle=False, seed=self.args.seed, drop_last=False)
            
        if self.progress['step'] > 1:
            train_sampler.set_epoch_resume(self.progress['epoch'], self.progress['cur_step'])

        if self.args.dynamic_batching:
            train_loader = torch.utils.data.DataLoader(train_dataset, 
                            batch_sampler=train_sampler, 
                            num_workers=self.args.num_workers//self.world_size,
                            collate_fn=train_dataset.collate, persistent_workers=True
                            )
            valid_loader = torch.utils.data.DataLoader(val_dataset, 
                            batch_sampler=valid_sampler, 
                            num_workers=self.args.num_workers//self.world_size,
                            collate_fn=val_dataset.collate, persistent_workers=True
                            )
        else:
            train_loader = torch.utils.data.DataLoader(train_dataset, 
                            batch_size=self.args.batch_size//self.world_size, sampler=train_sampler, num_workers=self.args.num_workers//self.world_size,
                            collate_fn=train_dataset.collate, persistent_workers=True
                            )
            valid_loader = torch.utils.data.DataLoader(val_dataset, 
                            batch_size=self.args.batch_size//self.world_size, sampler=valid_sampler,
                            num_workers=self.args.num_workers//self.world_size,
                            collate_fn=val_dataset.collate, persistent_workers=True
                            )
        return len(train_dataset), train_sampler, train_loader, valid_loader
        

        
    def _setup_models(self):
        model = voicecraft.VoiceCraft(self.args)

        if self.rank == 0:
            logging.info(model)
            logging.info("model parameters")
            print_model_info(model)

        if self.progress['step'] > 1:
            bundle = torch.load(os.path.join(self.args.exp_dir, "bundle.pth"), map_location="cpu")
            model.load_state_dict(bundle['model'])
            optim_states = bundle['optimizer']
            scheduler_states = bundle['scheduler']
            if self.rank == 0:
                logging.info("loaded parameters and data indices from epoch %d, global step %d" % (self.progress['epoch'], self.progress['step']))
            del bundle['model']
        else:
            optim_states = None
            scheduler_states = None

        if self.args.load_model_from != None and self.progress['step'] <= 1:
            sd = torch.load(self.args.load_model_from, map_location="cpu")['model']
            model.load_state_dict(sd)
            del sd
        
        if self.args.optimizer_name == "ScaledAdam":
            trainables = [p for p in model.parameters() if p.requires_grad]
        else:
            no_decay = [".bias", ".audio_embeddings.weight", ".text_embeddings.weight", ".norm.weight", ".norm1.weight", ".norm2.weight"]
            optimizer_grouped_parameters = [
                {
                    "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad],
                    "weight_decay": self.args.weight_decay,
                },
                {
                    "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad],
                    "weight_decay": 0.0,
                },
            ]
            if len(optimizer_grouped_parameters[1]['params']) == 0:
                logging.info("there is no embedding weights, bias, and layernorm parameters in the model, which should be True, check model parameter names")
                trainables = optimizer_grouped_parameters[0]
            else:
                trainables = optimizer_grouped_parameters
        model.to(self.device)

        return model, trainables, optim_states, scheduler_states

    
    def _setup_optimizer(self):
        if self.args.optimizer_name == "ScaledAdam":
            parameters_names = []
            parameters_names.append([n for n,p in self.model.named_parameters() if p.requires_grad])
            optimizer = ScaledAdam(
                self.trainables,
                lr=self.args.lr,
                betas=(0.9, 0.95),
                clipping_scale=2.0,
                parameters_names=parameters_names,
                show_dominant_parameters=False,
                clipping_update_period=self.args.clipping_update_period,
            )
            scheduler = Eden(optimizer, self.args.reduce_lr_start_step, self.args.reduce_lr_start_epoch, warmup_batches=self.total_step * self.args.warmup_fraction)

        else:
            optimizer = AdamW(self.trainables, lr=self.args.lr)
            warmup_steps = self.total_step * self.args.warmup_fraction
            def lr_lambda(current_step: int):
                if current_step < warmup_steps:
                    return float(current_step) / float(max(1, warmup_steps))
                return max(
                    0.0, float(self.total_step - current_step) / float(max(1, self.total_step - warmup_steps))
                )

            scheduler = LambdaLR(optimizer, lr_lambda, last_epoch=-1)
            
        # if resume
        if self.progress['step'] > 1:
            optimizer.load_state_dict(self.optim_states)
            for state in optimizer.state.values():
                for k, v in state.items():
                    if isinstance(v, torch.Tensor):
                        state[k] = v.cuda()
            del self.optim_states

            scheduler.load_state_dict(self.scheduler_states)

        optimizer.zero_grad()
        return optimizer, scheduler
    
    def seed_everything(self, seed=1):
        os.environ['PYTHONHASHSEED'] = str(seed)
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.backends.cudnn.benchmark = False
        torch.backends.cudnn.deterministic = True