import gradio as gr from model.load_model import load_model from utils.video_utils import extract_frames from utils.face_utils import extract_faces from predictor.predict import predict_faces from utils.gradcam import get_gradcam, get_conv_layers import numpy as np from PIL import Image from tqdm import tqdm model = load_model() conv_layer_names = get_conv_layers(model) # populate dropdown choices def deepfake_app(video, selected_layer, progress=gr.Progress(track_tqdm=True)): frames = extract_frames(video) frames = list(frames) faces = extract_faces(frames) faces = list(faces) if not faces: return "No face detected", None predictions = predict_faces(model, faces) predictions = list(predictions) avg_score = np.mean(predictions) label = "FAKE" if avg_score > 0.5 else "REAL" max_idx = np.argmax(predictions) cam_image = get_gradcam(model, faces[max_idx], selected_layer) cam_image = Image.fromarray(cam_image) return label, cam_image gr.Interface( fn=deepfake_app, inputs=[gr.Video(label="Upload a Video"), gr.Dropdown(choices=conv_layer_names, label="Model target layer", value=conv_layer_names[-1]) ], outputs=[ gr.Textbox(label="Prediction"), gr.Image(label="RAI Explainability") ], title="Deepfake video detection system", description="Upload a video, and the model will predict whether its a deepfake content, with RAI features." ).launch()