import gradio as gr from model.load_model import load_model from utils.video_utils import extract_frames from utils.face_utils import extract_faces from predictor.predict import predict_faces from utils.gradcam import get_gradcam, get_conv_layers import numpy as np from PIL import Image from tqdm import tqdm model = load_model() conv_layer_names = get_conv_layers(model) # populate dropdown choices def deepfake_app(video, selected_layer, progress=gr.Progress(track_tqdm=True)): frames = extract_frames(video) frames = list(frames) faces = extract_faces(frames) faces = list(progress.tqdm(faces, desc="Detecting faces")) if not faces: return "No face detected", None predictions = predict_faces(model, faces) predictions = list(progress.tqdm(predictions, desc="Running predictions")) avg_score = np.mean(predictions) label = "FAKE" if avg_score > 0.5 else "REAL" max_idx = np.argmax(predictions) cam_image = get_gradcam(model, faces[max_idx], selected_layer) cam_image = Image.fromarray(cam_image) return label, cam_image gr.Interface( fn=deepfake_app, inputs=[gr.Video(label="Upload a Video"), gr.Dropdown(choices=conv_layer_names, label="Grad-CAM Layer", value=conv_layer_names[-1]) ], outputs=["text", "image"], title="Deepfake Detection with XceptionNet", description="Upload a video, and the model will predict if it contains a deepfake with RAI explainability using GRADCAM." ).launch()