Spaces:
Runtime error
Runtime error
File size: 9,361 Bytes
f0d441e d0fff1f f0d441e df5230f 461c51a df5230f 47a12f5 df5230f dc8acb8 df5230f 47a12f5 df5230f 47a12f5 df5230f 47a12f5 dc8acb8 d939c9c dc8acb8 d939c9c dc8acb8 d939c9c dc8acb8 d939c9c dc8acb8 df5230f 47a12f5 df5230f dc8acb8 47a12f5 df5230f bfc302b 69c288d df5230f 2c9f146 df5230f 2c9f146 df5230f 04452e3 df5230f ae624e0 df5230f 3e91fbb df5230f f25970f 3e91fbb df5230f f0d441e df5230f d0fff1f dc8acb8 d0fff1f dc8acb8 d0097b1 3e91fbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os
import gradio as gr
import huggingface_hub
import pillow_avif
import spaces
import torch
import gc
from huggingface_hub import snapshot_download
from pillow_heif import register_heif_opener
from pipelines.pipeline_infu_flux import InfUFluxPipeline
# Register HEIF support for Pillow
register_heif_opener()
class ModelVersion:
STAGE_1 = "sim_stage1"
STAGE_2 = "aes_stage2"
DEFAULT_VERSION = STAGE_2
ENABLE_ANTI_BLUR_DEFAULT = False
ENABLE_REALISM_DEFAULT = False
loaded_pipeline_config = {
"model_version": "aes_stage2",
"enable_realism": False,
"enable_anti_blur": False,
'pipeline': None
}
def download_models():
snapshot_download(repo_id='ByteDance/InfiniteYou', local_dir='./models/InfiniteYou', local_dir_use_symlinks=False)
try:
snapshot_download(repo_id='black-forest-labs/FLUX.1-dev', local_dir='./models/FLUX.1-dev', local_dir_use_symlinks=False)
except Exception as e:
print(e)
print('\nYou are downloading `black-forest-labs/FLUX.1-dev` to `./models/FLUX.1-dev` but failed. '
'Please accept the agreement and obtain access at https://huggingface.co/black-forest-labs/FLUX.1-dev. '
'Then, use `huggingface-cli login` and your access tokens at https://huggingface.co/settings/tokens to authenticate. '
'After that, run the code again.')
print('\nYou can also download it manually from HuggingFace and put it in `./models/InfiniteYou`, '
'or you can modify `base_model_path` in `app.py` to specify the correct path.')
exit()
def init_pipeline(model_version, enable_realism, enable_anti_blur):
loaded_pipeline_config["enable_realism"] = enable_realism
loaded_pipeline_config["enable_anti_blur"] = enable_anti_blur
loaded_pipeline_config["model_version"] = model_version
pipeline = loaded_pipeline_config['pipeline']
gc.collect()
torch.cuda.empty_cache()
model_path = f'./models/InfiniteYou/infu_flux_v1.0/{model_version}'
print(f'loading model from {model_path}')
pipeline = InfUFluxPipeline(
base_model_path='./models/FLUX.1-dev',
infu_model_path=model_path,
insightface_root_path='./models/InfiniteYou/supports/insightface',
image_proj_num_tokens=8,
infu_flux_version='v1.0',
model_version=model_version,
)
loaded_pipeline_config['pipeline'] = pipeline
pipeline.pipe.delete_adapters(['realism', 'anti_blur'])
loras = []
if enable_realism: loras.append(['realism', 1.0])
if enable_anti_blur: loras.append(['anti_blur', 1.0])
pipeline.load_loras_state_dict(loras)
return pipeline
def prepare_pipeline(model_version, enable_realism, enable_anti_blur):
if (
loaded_pipeline_config['pipeline'] is not None
and loaded_pipeline_config["enable_realism"] == enable_realism
and loaded_pipeline_config["enable_anti_blur"] == enable_anti_blur
and model_version == loaded_pipeline_config["model_version"]
):
return loaded_pipeline_config['pipeline']
loaded_pipeline_config["enable_realism"] = enable_realism
loaded_pipeline_config["enable_anti_blur"] = enable_anti_blur
loaded_pipeline_config["model_version"] = model_version
pipeline = loaded_pipeline_config['pipeline']
if pipeline is None or pipeline.model_version != model_version:
print(f'Switching model to {model_version}')
pipeline.model_version = model_version
if model_version == 'aes_stage2':
pipeline.infusenet_sim.cpu()
pipeline.image_proj_model_sim.cpu()
torch.cuda.empty_cache()
pipeline.infusenet_aes.to('cuda')
pipeline.pipe.controlnet = pipeline.infusenet_aes
pipeline.image_proj_model_aes.to('cuda')
pipeline.image_proj_model = pipeline.image_proj_model_aes
else:
pipeline.infusenet_aes.cpu()
pipeline.image_proj_model_aes.cpu()
torch.cuda.empty_cache()
pipeline.infusenet_sim.to('cuda')
pipeline.pipe.controlnet = pipeline.infusenet_sim
pipeline.image_proj_model_sim.to('cuda')
pipeline.image_proj_model = pipeline.image_proj_model_sim
loaded_pipeline_config['pipeline'] = pipeline
pipeline.pipe.delete_adapters(['realism', 'anti_blur'])
loras = []
if enable_realism: loras.append(['realism', 1.0])
if enable_anti_blur: loras.append(['anti_blur', 1.0])
pipeline.load_loras_state_dict(loras)
return pipeline
@spaces.GPU(duration=120)
def generate_image(
input_image,
control_image,
prompt,
seed,
width,
height,
guidance_scale,
num_steps,
infusenet_conditioning_scale,
infusenet_guidance_start,
infusenet_guidance_end,
enable_realism,
enable_anti_blur,
model_version
):
try:
pipeline = prepare_pipeline(model_version=model_version, enable_realism=enable_realism, enable_anti_blur=enable_anti_blur)
if seed == 0:
seed = torch.seed() & 0xFFFFFFFF
image = pipeline(
id_image=input_image,
prompt=prompt,
control_image=control_image,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
num_steps=num_steps,
infusenet_conditioning_scale=infusenet_conditioning_scale,
infusenet_guidance_start=infusenet_guidance_start,
infusenet_guidance_end=infusenet_guidance_end,
)
except Exception as e:
print(e)
gr.Error(f"An error occurred: {e}")
return gr.update()
return gr.update(value=image, label=f"Generated Image, seed = {seed}")
# μ΄ ν¨μλ μ¬μ©λμ§ μμΌλ―λ‘ μ κ±°ν΄λ λ©λλ€
# def generate_examples(id_image, control_image, prompt_text, seed, enable_realism, enable_anti_blur, model_version):
# return generate_image(id_image, control_image, prompt_text, seed, 864, 1152, 3.5, 30, 1.0, 0.0, 1.0, enable_realism, enable_anti_blur, model_version)
with gr.Blocks() as demo:
session_state = gr.State({})
default_model_version = "v1.0"
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
ui_id_image = gr.Image(label="Identity Image", type="pil", scale=3, height=370, min_width=100)
with gr.Column(scale=2, min_width=100):
ui_control_image = gr.Image(label="Control Image [Optional]", type="pil", height=370, min_width=100)
ui_prompt_text = gr.Textbox(label="Prompt", value="Portrait, 4K, high quality, cinematic")
ui_model_version = gr.Dropdown(
label="Model Version",
choices=[ModelVersion.STAGE_1, ModelVersion.STAGE_2],
value=ModelVersion.DEFAULT_VERSION,
)
ui_btn_generate = gr.Button("Generate")
with gr.Accordion("Advanced", open=False):
with gr.Row():
ui_num_steps = gr.Number(label="num steps", value=30)
ui_seed = gr.Number(label="seed (0 for random)", value=0)
with gr.Row():
ui_width = gr.Number(label="width", value=864)
ui_height = gr.Number(label="height", value=1152)
ui_guidance_scale = gr.Number(label="guidance scale", value=3.5, step=0.5)
ui_infusenet_conditioning_scale = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="infusenet conditioning scale")
with gr.Row():
ui_infusenet_guidance_start = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="infusenet guidance start")
ui_infusenet_guidance_end = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="infusenet guidance end")
with gr.Accordion("LoRAs [Optional]", open=True):
with gr.Row():
ui_enable_realism = gr.Checkbox(label="Enable realism LoRA", value=ENABLE_REALISM_DEFAULT)
ui_enable_anti_blur = gr.Checkbox(label="Enable anti-blur LoRA", value=ENABLE_ANTI_BLUR_DEFAULT)
with gr.Column(scale=2):
image_output = gr.Image(label="Generated Image", interactive=False, height=550, format='png')
# gr.Examples λΆλΆμ μμ ν μ κ±°νμ΅λλ€
ui_btn_generate.click(
generate_image,
inputs=[
ui_id_image,
ui_control_image,
ui_prompt_text,
ui_seed,
ui_width,
ui_height,
ui_guidance_scale,
ui_num_steps,
ui_infusenet_conditioning_scale,
ui_infusenet_guidance_start,
ui_infusenet_guidance_end,
ui_enable_realism,
ui_enable_anti_blur,
ui_model_version
],
outputs=[image_output],
concurrency_id="gpu"
)
huggingface_hub.login(os.getenv('PRIVATE_HF_TOKEN'))
download_models()
init_pipeline(model_version=ModelVersion.DEFAULT_VERSION, enable_realism=ENABLE_REALISM_DEFAULT, enable_anti_blur=ENABLE_ANTI_BLUR_DEFAULT)
# demo.queue()
demo.launch()
# demo.launch(server_name='0.0.0.0') # IPv4
# demo.launch(server_name='[::]') # IPv6 |