File size: 10,206 Bytes
2e94917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f4d99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e94917
 
 
 
 
 
 
 
95f4d99
2e94917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc844d3
2e94917
 
 
95f4d99
2e94917
 
 
95f4d99
2e94917
 
95f4d99
2e94917
 
 
95f4d99
2e94917
 
95f4d99
2e94917
 
 
 
 
cc844d3
2e94917
 
 
 
 
 
 
95f4d99
2e94917
 
95f4d99
2e94917
 
 
 
 
 
 
 
 
 
95f4d99
2e94917
 
95f4d99
2e94917
 
95f4d99
2e94917
95f4d99
2e94917
95f4d99
2e94917
 
 
95f4d99
2e94917
 
 
 
 
 
95f4d99
2e94917
 
 
95f4d99
2e94917
 
95f4d99
2e94917
 
 
95f4d99
2e94917
 
 
95f4d99
2e94917
 
 
95f4d99
2e94917
 
95f4d99
2e94917
 
 
 
 
95f4d99
d6dda21
95f4d99
2e94917
 
 
 
d6dda21
2e94917
 
 
 
 
95f4d99
 
 
cc844d3
95f4d99
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import time
from io import BytesIO
import os
from dotenv import load_dotenv
from PIL import Image
import logging
from typing import List
from huggingface_hub import login
from fastapi import FastAPI, File, UploadFile
from vllm import LLM, SamplingParams
import torch
import torch._dynamo
torch._dynamo.config.suppress_errors = True

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Load environment variables
load_dotenv()

# Set the cache directory to a writable path
os.environ["TORCHINDUCTOR_CACHE_DIR"] = "/tmp/torch_inductor_cache"
token = os.getenv("huggingface_ankit")

# Login to the Hugging Face Hub
login(token)

app = FastAPI()

llm = None

def load_vllm_model():
    global llm
    logger.info(f"Loading vLLM model...")
    if llm is None:
        llm = LLM(
            model="google/paligemma2-3b-mix-448",
            trust_remote_code=True,
            max_model_len=4096,
            dtype="float16",
        )

@app.post("/batch_extract_text_vllm")
async def batch_extract_text_vllm(files: List[UploadFile] = File(...)):
    try:
        start_time = time.time()
        load_vllm_model()
        results = []        
        sampling_params = SamplingParams(temperature=0.0,max_tokens=32)
        # Load images
        images = []
        for file in files:
            image_data = await file.read()
            img = Image.open(BytesIO(image_data)).convert("RGB")
            images.append(img)
        for image in images:    
            inputs = {
                "prompt": "ocr",
                "multi_modal_data": {
                    "image": image
                },
            }
            outputs = llm.generate(inputs, sampling_params)
            for o in outputs:
                generated_text = o.outputs[0].text        
                results.append(generated_text)
                        
        logger.info(f"vLLM Batch processing completed in {time.time() - start_time:.2f} seconds")
        return {"extracted_texts": results}
    except Exception as e:
        logger.error(f"Error in batch processing vLLM: {str(e)}")
        return {"error": str(e)}
    
# # main.py
# from fastapi import FastAPI, File, UploadFile
# from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
# from transformers.image_utils import load_image
# import torch
# from io import BytesIO
# import os
# from dotenv import load_dotenv
# from PIL import Image

# from huggingface_hub import login

# # Load environment variables
# load_dotenv()

# # Set the cache directory to a writable path
# os.environ["TORCHINDUCTOR_CACHE_DIR"] = "/tmp/torch_inductor_cache"

# token = os.getenv("huggingface_ankit")
# # Login to the Hugging Face Hub
# login(token)

# app = FastAPI()

# model_id = "google/paligemma2-3b-mix-448"
# model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).to('cuda')
# processor = PaliGemmaProcessor.from_pretrained(model_id)

# def predict(image):
#     prompt = "<image> ocr"
#     model_inputs = processor(text=prompt, images=image, return_tensors="pt").to('cuda')
#     input_len = model_inputs["input_ids"].shape[-1]
#     with torch.inference_mode():
#         generation = model.generate(**model_inputs, max_new_tokens=200)
#     torch.cuda.empty_cache()
#     decoded = processor.decode(generation[0], skip_special_tokens=True) #[len(prompt):].lstrip("\n")
#     return decoded

# @app.post("/extract_text")
# async def extract_text(file: UploadFile = File(...)):
#     image = Image.open(BytesIO(await file.read())).convert("RGB")  # Ensure it's a valid PIL image
#     text = predict(image)
#     return {"extracted_text": text}

# @app.post("/batch_extract_text")
# async def batch_extract_text(files: list[UploadFile] = File(...)):
#     # if len(files) > 20:
#     #     return {"error": "A maximum of 20 images can be processed at a time."}
    
#     images = [Image.open(BytesIO(await file.read())).convert("RGB") for file in files]
#     prompts = ["OCR"] * len(images)
    
#     model_inputs = processor(text=prompts, images=images, return_tensors="pt").to(torch.bfloat16).to(model.device)
#     input_len = model_inputs["input_ids"].shape[-1]
    
#     with torch.inference_mode():
#         generations = model.generate(**model_inputs, max_new_tokens=200, do_sample=False)
#     torch.cuda.empty_cache()
#     extracted_texts = [processor.decode(generations[i], skip_special_tokens=True) for i in range(len(images))]
    
#     return {"extracted_texts": extracted_texts}
    
# if __name__ == "__main__":
#     import uvicorn
#     uvicorn.run(app, host="0.0.0.0", port=7860)
# Global variables for model and processor
# model = None
# processor = None
# def load_model():
#     """Load model and processor when needed"""
#     global model, processor
#     if model is None:
#         model_id = "google/paligemma2-3b-mix-448"
#         logger.info(f"Loading model {model_id}")
        
#         # Load model with memory-efficient settings
#         model = PaliGemmaForConditionalGeneration.from_pretrained(
#             model_id,
#             device_map="auto",
#             torch_dtype=torch.bfloat16  # Use lower precision for memory efficiency
#         )
#         processor = PaliGemmaProcessor.from_pretrained(model_id)
#         logger.info("Model loaded successfully")
# def clean_memory():
#     """Force garbage collection and clear CUDA cache"""
#     gc.collect()
#     if torch.cuda.is_available():
#         torch.cuda.empty_cache()
#         # Clear GPU cache
#         torch.cuda.empty_cache()
#         logger.info(f"Memory allocated after clearing cache: {torch.cuda.memory_allocated()} bytes")
#         logger.info("Memory cleaned")

# def predict(image):
#     """Process a single image"""
#     load_model()  # Ensure model is loaded
    
#     # Process input
#     prompt = "<image> ocr"
#     model_inputs = processor(text=prompt, images=image, return_tensors="pt")
    
#     # Move to appropriate device
#     model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
    
#     # Generate with memory optimization
#     with torch.inference_mode():
#         generation = model.generate(**model_inputs, max_new_tokens=200)
        
#     # Decode output
#     decoded = processor.decode(generation[0], skip_special_tokens=True)
    
#     # Clean up intermediates
#     del model_inputs, generation
#     clean_memory()
#     # del model,processor
#     return decoded

# @app.post("/extract_text")
# async def extract_text(background_tasks: BackgroundTasks, file: UploadFile = File(...)):
#     """Extract text from a single image"""
#     try:
#         start_time = time.time()
#         image = Image.open(BytesIO(await file.read())).convert("RGB")
#         text = predict(image)
        
#         # Schedule cleanup after response
#         background_tasks.add_task(clean_memory)
        
#         logger.info(f"Processing completed in {time.time() - start_time:.2f} seconds")
#         return {"extracted_text": text}
#     except Exception as e:
#         logger.error(f"Error processing image: {str(e)}")
#         return {"error": str(e)}
# @app.post("/batch_extract_text")
# async def batch_extract_text(batch_size:int, background_tasks: BackgroundTasks, files: List[UploadFile] = File(...)):
#     """Extract text from multiple images with batching"""
#     try:
#         start_time = time.time()
        
#         # Limit batch size for memory management
#         max_batch_size = 32  # Adjust based on your GPU memory
        
#         # if len(files) > 32:
#         #     return {"error": "A maximum of 20 images can be processed at a time."}
        
#         load_model()  # Ensure model is loaded
        
#         all_results = []
        
#         # Process in smaller batches
#         for i in range(0, len(files), max_batch_size):
#             batch_files = files[i:i+max_batch_size]
            
#             # Load images
#             images = []
#             for file in batch_files:
#                 image_data = await file.read()
#                 img = Image.open(BytesIO(image_data)).convert("RGB")
#                 images.append(img)
            
#             # Create batch inputs
#             prompts = ["<image> ocr"] * len(images)
#             model_inputs = processor(text=prompts, images=images, return_tensors="pt")
            
#             # Move to appropriate device
#             model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
            
#             # Generate with memory optimization
#             with torch.inference_mode():
#                 generations = model.generate(**model_inputs, max_new_tokens=200, do_sample=False)
            
#             # Decode outputs
#             batch_results = [processor.decode(generations[i], skip_special_tokens=True) for i in range(len(images))]
#             all_results.extend(batch_results)
            
#             # Clean up batch resources
#             del model_inputs, generations, images
#             clean_memory()
        
#         # Schedule cleanup after response
#         background_tasks.add_task(clean_memory)
        
#         logger.info(f"Batch processing completed in {time.time() - start_time:.2f} seconds")
#         return {"extracted_texts": all_results}
#     except Exception as e:
#         logger.error(f"Error in batch processing: {str(e)}")
#         return {"error": str(e)}


# Health check endpoint
# @app.get("/health")
# async def health_check():
#     # Generate a random image (20x40 pixels) with random RGB values
#     random_data = np.random.randint(0, 256, (20, 40, 3), dtype=np.uint8)
    
#     # Create an image from the random data
#     image = Image.fromarray(random_data)
#     predict(image)
#     clean_memory()
#     return {"status": "healthy"}

# if __name__ == "__main__":
#     import uvicorn
    
#     # Start the server with proper worker configuration
#     uvicorn.run(
#         app, 
#         host="0.0.0.0", 
#         port=7860,
#         log_level="info",
#         workers=1  # Multiple workers can cause GPU memory issues
#     )