Spaces:
Sleeping
Sleeping
File size: 10,206 Bytes
2e94917 95f4d99 2e94917 95f4d99 2e94917 cc844d3 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 cc844d3 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 2e94917 95f4d99 d6dda21 95f4d99 2e94917 d6dda21 2e94917 95f4d99 cc844d3 95f4d99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import time
from io import BytesIO
import os
from dotenv import load_dotenv
from PIL import Image
import logging
from typing import List
from huggingface_hub import login
from fastapi import FastAPI, File, UploadFile
from vllm import LLM, SamplingParams
import torch
import torch._dynamo
torch._dynamo.config.suppress_errors = True
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Set the cache directory to a writable path
os.environ["TORCHINDUCTOR_CACHE_DIR"] = "/tmp/torch_inductor_cache"
token = os.getenv("huggingface_ankit")
# Login to the Hugging Face Hub
login(token)
app = FastAPI()
llm = None
def load_vllm_model():
global llm
logger.info(f"Loading vLLM model...")
if llm is None:
llm = LLM(
model="google/paligemma2-3b-mix-448",
trust_remote_code=True,
max_model_len=4096,
dtype="float16",
)
@app.post("/batch_extract_text_vllm")
async def batch_extract_text_vllm(files: List[UploadFile] = File(...)):
try:
start_time = time.time()
load_vllm_model()
results = []
sampling_params = SamplingParams(temperature=0.0,max_tokens=32)
# Load images
images = []
for file in files:
image_data = await file.read()
img = Image.open(BytesIO(image_data)).convert("RGB")
images.append(img)
for image in images:
inputs = {
"prompt": "ocr",
"multi_modal_data": {
"image": image
},
}
outputs = llm.generate(inputs, sampling_params)
for o in outputs:
generated_text = o.outputs[0].text
results.append(generated_text)
logger.info(f"vLLM Batch processing completed in {time.time() - start_time:.2f} seconds")
return {"extracted_texts": results}
except Exception as e:
logger.error(f"Error in batch processing vLLM: {str(e)}")
return {"error": str(e)}
# # main.py
# from fastapi import FastAPI, File, UploadFile
# from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration
# from transformers.image_utils import load_image
# import torch
# from io import BytesIO
# import os
# from dotenv import load_dotenv
# from PIL import Image
# from huggingface_hub import login
# # Load environment variables
# load_dotenv()
# # Set the cache directory to a writable path
# os.environ["TORCHINDUCTOR_CACHE_DIR"] = "/tmp/torch_inductor_cache"
# token = os.getenv("huggingface_ankit")
# # Login to the Hugging Face Hub
# login(token)
# app = FastAPI()
# model_id = "google/paligemma2-3b-mix-448"
# model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).to('cuda')
# processor = PaliGemmaProcessor.from_pretrained(model_id)
# def predict(image):
# prompt = "<image> ocr"
# model_inputs = processor(text=prompt, images=image, return_tensors="pt").to('cuda')
# input_len = model_inputs["input_ids"].shape[-1]
# with torch.inference_mode():
# generation = model.generate(**model_inputs, max_new_tokens=200)
# torch.cuda.empty_cache()
# decoded = processor.decode(generation[0], skip_special_tokens=True) #[len(prompt):].lstrip("\n")
# return decoded
# @app.post("/extract_text")
# async def extract_text(file: UploadFile = File(...)):
# image = Image.open(BytesIO(await file.read())).convert("RGB") # Ensure it's a valid PIL image
# text = predict(image)
# return {"extracted_text": text}
# @app.post("/batch_extract_text")
# async def batch_extract_text(files: list[UploadFile] = File(...)):
# # if len(files) > 20:
# # return {"error": "A maximum of 20 images can be processed at a time."}
# images = [Image.open(BytesIO(await file.read())).convert("RGB") for file in files]
# prompts = ["OCR"] * len(images)
# model_inputs = processor(text=prompts, images=images, return_tensors="pt").to(torch.bfloat16).to(model.device)
# input_len = model_inputs["input_ids"].shape[-1]
# with torch.inference_mode():
# generations = model.generate(**model_inputs, max_new_tokens=200, do_sample=False)
# torch.cuda.empty_cache()
# extracted_texts = [processor.decode(generations[i], skip_special_tokens=True) for i in range(len(images))]
# return {"extracted_texts": extracted_texts}
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=7860)
# Global variables for model and processor
# model = None
# processor = None
# def load_model():
# """Load model and processor when needed"""
# global model, processor
# if model is None:
# model_id = "google/paligemma2-3b-mix-448"
# logger.info(f"Loading model {model_id}")
# # Load model with memory-efficient settings
# model = PaliGemmaForConditionalGeneration.from_pretrained(
# model_id,
# device_map="auto",
# torch_dtype=torch.bfloat16 # Use lower precision for memory efficiency
# )
# processor = PaliGemmaProcessor.from_pretrained(model_id)
# logger.info("Model loaded successfully")
# def clean_memory():
# """Force garbage collection and clear CUDA cache"""
# gc.collect()
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
# # Clear GPU cache
# torch.cuda.empty_cache()
# logger.info(f"Memory allocated after clearing cache: {torch.cuda.memory_allocated()} bytes")
# logger.info("Memory cleaned")
# def predict(image):
# """Process a single image"""
# load_model() # Ensure model is loaded
# # Process input
# prompt = "<image> ocr"
# model_inputs = processor(text=prompt, images=image, return_tensors="pt")
# # Move to appropriate device
# model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
# # Generate with memory optimization
# with torch.inference_mode():
# generation = model.generate(**model_inputs, max_new_tokens=200)
# # Decode output
# decoded = processor.decode(generation[0], skip_special_tokens=True)
# # Clean up intermediates
# del model_inputs, generation
# clean_memory()
# # del model,processor
# return decoded
# @app.post("/extract_text")
# async def extract_text(background_tasks: BackgroundTasks, file: UploadFile = File(...)):
# """Extract text from a single image"""
# try:
# start_time = time.time()
# image = Image.open(BytesIO(await file.read())).convert("RGB")
# text = predict(image)
# # Schedule cleanup after response
# background_tasks.add_task(clean_memory)
# logger.info(f"Processing completed in {time.time() - start_time:.2f} seconds")
# return {"extracted_text": text}
# except Exception as e:
# logger.error(f"Error processing image: {str(e)}")
# return {"error": str(e)}
# @app.post("/batch_extract_text")
# async def batch_extract_text(batch_size:int, background_tasks: BackgroundTasks, files: List[UploadFile] = File(...)):
# """Extract text from multiple images with batching"""
# try:
# start_time = time.time()
# # Limit batch size for memory management
# max_batch_size = 32 # Adjust based on your GPU memory
# # if len(files) > 32:
# # return {"error": "A maximum of 20 images can be processed at a time."}
# load_model() # Ensure model is loaded
# all_results = []
# # Process in smaller batches
# for i in range(0, len(files), max_batch_size):
# batch_files = files[i:i+max_batch_size]
# # Load images
# images = []
# for file in batch_files:
# image_data = await file.read()
# img = Image.open(BytesIO(image_data)).convert("RGB")
# images.append(img)
# # Create batch inputs
# prompts = ["<image> ocr"] * len(images)
# model_inputs = processor(text=prompts, images=images, return_tensors="pt")
# # Move to appropriate device
# model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
# # Generate with memory optimization
# with torch.inference_mode():
# generations = model.generate(**model_inputs, max_new_tokens=200, do_sample=False)
# # Decode outputs
# batch_results = [processor.decode(generations[i], skip_special_tokens=True) for i in range(len(images))]
# all_results.extend(batch_results)
# # Clean up batch resources
# del model_inputs, generations, images
# clean_memory()
# # Schedule cleanup after response
# background_tasks.add_task(clean_memory)
# logger.info(f"Batch processing completed in {time.time() - start_time:.2f} seconds")
# return {"extracted_texts": all_results}
# except Exception as e:
# logger.error(f"Error in batch processing: {str(e)}")
# return {"error": str(e)}
# Health check endpoint
# @app.get("/health")
# async def health_check():
# # Generate a random image (20x40 pixels) with random RGB values
# random_data = np.random.randint(0, 256, (20, 40, 3), dtype=np.uint8)
# # Create an image from the random data
# image = Image.fromarray(random_data)
# predict(image)
# clean_memory()
# return {"status": "healthy"}
# if __name__ == "__main__":
# import uvicorn
# # Start the server with proper worker configuration
# uvicorn.run(
# app,
# host="0.0.0.0",
# port=7860,
# log_level="info",
# workers=1 # Multiple workers can cause GPU memory issues
# ) |