aimeri's picture
Refactor process_input and create_demo functions in app.py to enhance chat history management and improve text response handling, including the addition of user and assistant avatars. Update input clearing logic for better user experience with multimodal inputs.
8ddcd3c
raw
history blame
16.8 kB
import gradio as gr
import torch
from transformers import Qwen2_5OmniModel, Qwen2_5OmniProcessor, TextStreamer
from qwen_omni_utils import process_mm_info
import soundfile as sf
import tempfile
import spaces
import gc
# Initialize the model and processor
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float16
def get_model():
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
model = Qwen2_5OmniModel.from_pretrained(
"Qwen/Qwen2.5-Omni-7B",
torch_dtype=torch_dtype,
device_map="auto",
enable_audio_output=True,
low_cpu_mem_usage=True,
# attn_implementation="flash_attention_2" if torch.cuda.is_available() else None
)
return model
model = get_model()
processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")
# System prompt
SYSTEM_PROMPT = {
"role": "system",
"content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."
}
# Voice options
VOICE_OPTIONS = {
"Chelsie (Female)": "Chelsie",
"Ethan (Male)": "Ethan"
}
@spaces.GPU
def process_input(image, audio, video, text, chat_history, voice_type, enable_audio_output):
try:
# Clear GPU memory before processing
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# Combine multimodal inputs
user_input = {
"text": text,
"image": image if image is not None else None,
"audio": audio if audio is not None else None,
"video": video if video is not None else None
}
# Prepare conversation history for model processing
conversation = [SYSTEM_PROMPT]
# Add previous chat history
if isinstance(chat_history, list):
for item in chat_history:
if isinstance(item, list) and len(item) == 2:
user_msg, bot_msg = item
if bot_msg is not None: # Only add complete message pairs
# Convert display format back to processable format
processed_msg = user_msg
if "[Image]" in user_msg:
processed_msg = {"type": "text", "text": user_msg.replace("[Image]", "").strip()}
if "[Audio]" in user_msg:
processed_msg = {"type": "text", "text": user_msg.replace("[Audio]", "").strip()}
if "[Video]" in user_msg:
processed_msg = {"type": "text", "text": user_msg.replace("[Video]", "").strip()}
conversation.append({"role": "user", "content": processed_msg})
conversation.append({"role": "assistant", "content": bot_msg})
# Add current user input
conversation.append({"role": "user", "content": user_input_to_content(user_input)})
# Prepare for inference
model_input = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
try:
audios, images, videos = process_mm_info(conversation, use_audio_in_video=False) # Default to no audio in video
except Exception as e:
print(f"Error processing multimedia: {str(e)}")
audios, images, videos = [], [], [] # Fallback to empty lists
inputs = processor(
text=model_input,
audios=audios,
images=images,
videos=videos,
return_tensors="pt",
padding=True
)
# Move inputs to device and convert dtype
inputs = {k: v.to(device=model.device, dtype=model.dtype) if isinstance(v, torch.Tensor) else v
for k, v in inputs.items()}
# Generate response with streaming
try:
if enable_audio_output:
voice_type_value = VOICE_OPTIONS.get(voice_type, "Chelsie")
text_ids, audio = model.generate(
**inputs,
use_audio_in_video=False, # Set to False to avoid audio processing issues
return_audio=True,
spk=voice_type_value,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.9,
streamer=TextStreamer(processor, skip_prompt=True)
)
# Save audio to temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
sf.write(
tmp_file.name,
audio.reshape(-1).detach().cpu().numpy(),
samplerate=24000,
)
audio_path = tmp_file.name
else:
text_ids = model.generate(
**inputs,
use_audio_in_video=False, # Set to False to avoid audio processing issues
return_audio=False,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.9,
streamer=TextStreamer(processor, skip_prompt=True)
)
audio_path = None
# Decode text response
text_response = processor.batch_decode(
text_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
# Clean up text response by removing system/user messages and special tokens
text_response = text_response.strip()
# Remove everything before the last assistant's message
if "<|im_start|>assistant" in text_response:
text_response = text_response.split("<|im_start|>assistant")[-1]
# Remove any remaining special tokens
text_response = text_response.replace("<|im_end|>", "").replace("<|im_start|>", "")
if text_response.startswith(":"):
text_response = text_response[1:].strip()
# Format user message for chat history display
user_message_for_display = str(text) if text is not None else ""
if image is not None:
user_message_for_display = (user_message_for_display + " " if user_message_for_display.strip() else "") + "[Image]"
if audio is not None:
user_message_for_display = (user_message_for_display + " " if user_message_for_display.strip() else "") + "[Audio]"
if video is not None:
user_message_for_display = (user_message_for_display + " " if user_message_for_display.strip() else "") + "[Video]"
# If empty, provide a default message
if not user_message_for_display.strip():
user_message_for_display = "Multimodal input"
# Update chat history with properly formatted entries
if not isinstance(chat_history, list):
chat_history = []
# Find the last incomplete message pair if it exists
if chat_history and isinstance(chat_history[-1], list) and len(chat_history[-1]) == 2 and chat_history[-1][1] is None:
chat_history[-1][1] = text_response
else:
chat_history.append([user_message_for_display, text_response])
# Clear GPU memory after processing
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# Prepare output
if enable_audio_output and audio_path:
return chat_history, text_response, audio_path
else:
return chat_history, text_response, None
except Exception as e:
print(f"Error during generation: {str(e)}")
error_msg = "I apologize, but I encountered an error processing your request. Please try again."
chat_history.append([user_message_for_display, error_msg])
return chat_history, error_msg, None
except Exception as e:
print(f"Error in process_input: {str(e)}")
if not isinstance(chat_history, list):
chat_history = []
error_msg = "I apologize, but I encountered an error processing your request. Please try again."
chat_history.append([str(text) if text is not None else "Error", error_msg])
return chat_history, error_msg, None
def user_input_to_content(user_input):
if isinstance(user_input, str):
return user_input
elif isinstance(user_input, dict):
# Handle file uploads
content = []
if "text" in user_input and user_input["text"]:
content.append({"type": "text", "text": user_input["text"]})
if "image" in user_input and user_input["image"]:
content.append({"type": "image", "image": user_input["image"]})
if "audio" in user_input and user_input["audio"]:
content.append({"type": "audio", "audio": user_input["audio"]})
if "video" in user_input and user_input["video"]:
content.append({"type": "video", "video": user_input["video"]})
return content
return user_input
def create_demo():
with gr.Blocks(title="Qwen2.5-Omni Chat Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown("# Qwen2.5-Omni Multimodal Chat Demo")
gr.Markdown("Experience the omni-modal capabilities of Qwen2.5-Omni through text, images, audio, and video interactions.")
# Hidden placeholder components for text-only input
placeholder_image = gr.Image(type="filepath", visible=False)
placeholder_audio = gr.Audio(type="filepath", visible=False)
placeholder_video = gr.Video(visible=False)
# Chat interface
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=600,
show_label=False,
avatar_images=["user.png", "assistant.png"]
)
with gr.Accordion("Advanced Options", open=False):
voice_type = gr.Dropdown(
choices=list(VOICE_OPTIONS.keys()),
value="Chelsie (Female)",
label="Voice Type"
)
enable_audio_output = gr.Checkbox(
value=True,
label="Enable Audio Output"
)
# Multimodal input components
with gr.Tabs():
with gr.TabItem("Text Input"):
text_input = gr.Textbox(
placeholder="Type your message here...",
label="Text Input",
autofocus=True,
container=False,
)
text_submit = gr.Button("Send Text", variant="primary")
with gr.TabItem("Multimodal Input"):
with gr.Row():
image_input = gr.Image(
type="filepath",
label="Upload Image"
)
audio_input = gr.Audio(
type="filepath",
label="Upload Audio"
)
with gr.Row():
video_input = gr.Video(
label="Upload Video"
)
additional_text = gr.Textbox(
placeholder="Additional text message...",
label="Additional Text",
container=False,
)
multimodal_submit = gr.Button("Send Multimodal Input", variant="primary")
clear_button = gr.Button("Clear Chat")
with gr.Column(scale=1):
gr.Markdown("## Model Capabilities")
gr.Markdown("""
**Qwen2.5-Omni can:**
- Process and understand text
- Analyze images and answer questions about them
- Transcribe and understand audio
- Analyze video content (with or without audio)
- Generate natural speech responses
""")
gr.Markdown("### Example Prompts")
gr.Examples(
examples=[
["Describe what you see in this image", "image"],
["What is being said in this audio clip?", "audio"],
["What's happening in this video?", "video"],
["Explain quantum computing in simple terms", "text"],
["Generate a short story about a robot learning to paint", "text"]
],
inputs=[text_input, gr.Textbox(visible=False)],
label="Text Examples"
)
audio_output = gr.Audio(
label="Model Speech Output",
visible=True,
autoplay=True
)
text_output = gr.Textbox(
label="Model Text Response",
interactive=False
)
# Text input handling
text_submit.click(
fn=lambda text: [[text if text is not None else "", None]],
inputs=text_input,
outputs=[chatbot],
queue=False
).then(
fn=process_input,
inputs=[placeholder_image, placeholder_audio, placeholder_video, text_input, chatbot, voice_type, enable_audio_output],
outputs=[chatbot, text_output, audio_output]
).then(
fn=lambda: "", # Clear input after submission
outputs=text_input
)
# Multimodal input handling
def prepare_multimodal_input(image, audio, video, text):
# Create a display message that indicates what was uploaded
display_message = str(text) if text is not None else ""
if image is not None:
display_message = (display_message + " " if display_message.strip() else "") + "[Image]"
if audio is not None:
display_message = (display_message + " " if display_message.strip() else "") + "[Audio]"
if video is not None:
display_message = (display_message + " " if display_message.strip() else "") + "[Video]"
if not display_message.strip():
display_message = "Multimodal content"
return [[display_message, None]]
multimodal_submit.click(
fn=prepare_multimodal_input,
inputs=[image_input, audio_input, video_input, additional_text],
outputs=[chatbot],
queue=False
).then(
fn=process_input,
inputs=[image_input, audio_input, video_input, additional_text,
chatbot, voice_type, enable_audio_output],
outputs=[chatbot, text_output, audio_output]
).then(
fn=lambda: (None, None, None, ""), # Clear inputs after submission
outputs=[image_input, audio_input, video_input, additional_text]
)
# Clear chat
def clear_chat():
return [], None, None
clear_button.click(
fn=clear_chat,
outputs=[chatbot, text_output, audio_output]
)
# Update audio output visibility
def toggle_audio_output(enable_audio):
return gr.Audio(visible=enable_audio)
enable_audio_output.change(
fn=toggle_audio_output,
inputs=enable_audio_output,
outputs=audio_output
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(server_name="0.0.0.0", server_port=7860)