Spaces:
Build error
Build error
File size: 19,785 Bytes
039d869 e4a9a7a 039d869 c7db60b 8ddcd3c 039d869 b7fa0fa 039d869 8ddcd3c c98fc82 8ddcd3c 039d869 8ddcd3c 039d869 c7db60b f0ab3ba 1638860 8ddcd3c 039d869 d4eafc5 8ddcd3c 9f83467 8ddcd3c 039d869 8ddcd3c c777d2d c98fc82 c777d2d 8ddcd3c c777d2d c98fc82 c777d2d 8ddcd3c c777d2d c98fc82 c777d2d c98fc82 8ddcd3c c777d2d 8ddcd3c c777d2d d4eafc5 8ddcd3c 417050f 8ddcd3c 417050f 8ddcd3c 417050f 8ddcd3c 417050f 8ddcd3c 417050f 8ddcd3c 039d869 513e0c6 039d869 e4a9a7a c777d2d e4a9a7a 039d869 e4a9a7a 039d869 e4a9a7a 039d869 e4a9a7a 039d869 e4a9a7a 039d869 9f83467 039d869 513e0c6 039d869 8ddcd3c 039d869 9e14c66 6a119c7 9e14c66 6a119c7 9e14c66 6a119c7 9e14c66 6a119c7 9e14c66 6a119c7 9e14c66 417050f 039d869 f0ab3ba 039d869 8ddcd3c 039d869 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import gradio as gr
import torch
from transformers import Qwen2_5OmniModel, Qwen2_5OmniProcessor, TextStreamer
from qwen_omni_utils import process_mm_info
import soundfile as sf
import tempfile
import spaces
import gc
# Initialize the model and processor
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float16
def get_model():
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
model = Qwen2_5OmniModel.from_pretrained(
"Qwen/Qwen2.5-Omni-7B",
torch_dtype=torch_dtype,
device_map="auto",
enable_audio_output=True,
low_cpu_mem_usage=True,
attn_implementation="flash_attention_2" if torch.cuda.is_available() else None
)
return model
model = get_model()
processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")
# System prompt
SYSTEM_PROMPT = {
"role": "system",
"content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."
}
# Voice options
VOICE_OPTIONS = {
"Chelsie (Female)": "Chelsie",
"Ethan (Male)": "Ethan"
}
@spaces.GPU
def process_input(image, audio, video, text, chat_history, voice_type, enable_audio_output):
try:
# Clear GPU memory before processing
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# Initialize user_message_for_display at the start
user_message_for_display = str(text) if text is not None else ""
if image is not None:
user_message_for_display = (user_message_for_display + " " if user_message_for_display.strip() else "") + "[Image]"
if audio is not None:
user_message_for_display = (user_message_for_display + " " if user_message_for_display.strip() else "") + "[Audio]"
if video is not None:
user_message_for_display = (user_message_for_display + " " if user_message_for_display.strip() else "") + "[Video]"
# If empty, provide a default message
if not user_message_for_display.strip():
user_message_for_display = "Multimodal input"
# Combine multimodal inputs
user_input = {
"text": text,
"image": image if image is not None else None,
"audio": audio if audio is not None else None,
"video": video if video is not None else None
}
# Prepare conversation history for model processing
conversation = [SYSTEM_PROMPT]
# Add previous chat history
if isinstance(chat_history, list):
for message in chat_history:
if isinstance(message, dict) and "role" in message and "content" in message:
# Messages are already in the correct format
conversation.append(message)
elif isinstance(message, list) and len(message) == 2:
# Convert old format to new format
user_msg, bot_msg = message
if bot_msg is not None: # Only add complete message pairs
# Convert display format back to processable format
processed_msg = user_msg
if "[Image]" in user_msg:
processed_msg = {"type": "text", "text": user_msg.replace("[Image]", "").strip()}
if "[Audio]" in user_msg:
processed_msg = {"type": "text", "text": user_msg.replace("[Audio]", "").strip()}
if "[Video]" in user_msg:
processed_msg = {"type": "text", "text": user_msg.replace("[Video]", "").strip()}
conversation.append({"role": "user", "content": processed_msg})
conversation.append({"role": "assistant", "content": bot_msg})
# Add current user input
conversation.append({"role": "user", "content": user_input_to_content(user_input)})
# Prepare for inference
model_input = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
try:
audios, images, videos = process_mm_info(conversation, use_audio_in_video=False) # Default to no audio in video
except Exception as e:
print(f"Error processing multimedia: {str(e)}")
audios, images, videos = [], [], [] # Fallback to empty lists
inputs = processor(
text=model_input,
audios=audios,
images=images,
videos=videos,
return_tensors="pt",
padding=True
)
# Move inputs to device and convert dtype
inputs = {k: v.to(device=model.device, dtype=model.dtype) if isinstance(v, torch.Tensor) else v
for k, v in inputs.items()}
# Generate response with streaming
try:
text_ids = None
audio_path = None
generation_output = None
if enable_audio_output:
voice_type_value = VOICE_OPTIONS.get(voice_type, "Chelsie")
try:
generation_output = model.generate(
**inputs,
use_audio_in_video=False,
return_audio=True,
spk=voice_type_value,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.9,
streamer=TextStreamer(processor, skip_prompt=True)
)
if generation_output is not None and isinstance(generation_output, tuple) and len(generation_output) == 2:
text_ids, audio = generation_output
if audio is not None:
# Save audio to temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
sf.write(
tmp_file.name,
audio.reshape(-1).detach().cpu().numpy(),
samplerate=24000,
)
audio_path = tmp_file.name
else:
print("Warning: Unexpected generation output format")
# Fall back to text-only generation
text_ids = model.generate(
**inputs,
use_audio_in_video=False,
return_audio=False,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.9,
streamer=TextStreamer(processor, skip_prompt=True)
)
except Exception as e:
print(f"Error during audio generation: {str(e)}")
# Fall back to text-only generation
try:
text_ids = model.generate(
**inputs,
use_audio_in_video=False,
return_audio=False,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.9,
streamer=TextStreamer(processor, skip_prompt=True)
)
except Exception as e:
print(f"Error during fallback text generation: {str(e)}")
text_ids = None
else:
try:
text_ids = model.generate(
**inputs,
use_audio_in_video=False,
return_audio=False,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.9,
streamer=TextStreamer(processor, skip_prompt=True)
)
except Exception as e:
print(f"Error during text generation: {str(e)}")
text_ids = None
# Process the response
if text_ids is not None and len(text_ids) > 0:
try:
text_response = processor.batch_decode(
text_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
# Clean up text response
text_response = text_response.strip()
if "<|im_start|>assistant" in text_response:
text_response = text_response.split("<|im_start|>assistant")[-1]
text_response = text_response.replace("<|im_end|>", "").replace("<|im_start|>", "")
if text_response.startswith(":"):
text_response = text_response[1:].strip()
except Exception as e:
print(f"Error during text decoding: {str(e)}")
text_response = "I apologize, but I encountered an error processing the response."
else:
text_response = "I apologize, but I encountered an error generating a response."
# Update chat history with properly formatted entries
if not isinstance(chat_history, list):
chat_history = []
# Convert the current messages to the proper format
user_message = {"role": "user", "content": user_message_for_display}
assistant_message = {"role": "assistant", "content": text_response}
# Find the last incomplete message pair if it exists
if chat_history and isinstance(chat_history[-1], dict) and chat_history[-1]["role"] == "user":
chat_history.append(assistant_message)
else:
chat_history.extend([user_message, assistant_message])
# Clear GPU memory after processing
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# Prepare output
if enable_audio_output and audio_path:
return chat_history, text_response, audio_path
else:
return chat_history, text_response, None
except Exception as e:
print(f"Error during generation: {str(e)}")
error_msg = "I apologize, but I encountered an error processing your request. Please try again."
chat_history.append(
{"role": "assistant", "content": error_msg}
)
return chat_history, error_msg, None
except Exception as e:
print(f"Error in process_input: {str(e)}")
if not isinstance(chat_history, list):
chat_history = []
error_msg = "I apologize, but I encountered an error processing your request. Please try again."
chat_history.extend([
{"role": "user", "content": user_message_for_display},
{"role": "assistant", "content": error_msg}
])
return chat_history, error_msg, None
def user_input_to_content(user_input):
if isinstance(user_input, str):
return user_input
elif isinstance(user_input, dict):
# Handle file uploads
content = []
if "text" in user_input and user_input["text"]:
content.append({"type": "text", "text": user_input["text"]})
if "image" in user_input and user_input["image"]:
content.append({"type": "image", "image": user_input["image"]})
if "audio" in user_input and user_input["audio"]:
content.append({"type": "audio", "audio": user_input["audio"]})
if "video" in user_input and user_input["video"]:
content.append({"type": "video", "video": user_input["video"]})
return content
return user_input
def create_demo():
with gr.Blocks(title="Qwen2.5-Omni Chat Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown("# Qwen2.5-Omni Multimodal Chat Demo")
gr.Markdown("Experience the omni-modal capabilities of Qwen2.5-Omni through text, images, audio, and video interactions.")
# Hidden placeholder components for text-only input
placeholder_image = gr.Image(type="filepath", visible=False)
placeholder_audio = gr.Audio(type="filepath", visible=False)
placeholder_video = gr.Video(visible=False)
# Chat interface
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=600,
show_label=False,
avatar_images=["user.png", "assistant.png"],
type="messages"
)
with gr.Accordion("Advanced Options", open=False):
voice_type = gr.Dropdown(
choices=list(VOICE_OPTIONS.keys()),
value="Chelsie (Female)",
label="Voice Type"
)
enable_audio_output = gr.Checkbox(
value=True,
label="Enable Audio Output"
)
# Multimodal input components
with gr.Tabs():
with gr.TabItem("Text Input"):
text_input = gr.Textbox(
placeholder="Type your message here...",
label="Text Input",
autofocus=True,
container=False,
)
text_submit = gr.Button("Send Text", variant="primary")
with gr.TabItem("Multimodal Input"):
with gr.Row():
image_input = gr.Image(
type="filepath",
label="Upload Image"
)
audio_input = gr.Audio(
type="filepath",
label="Upload Audio"
)
with gr.Row():
video_input = gr.Video(
label="Upload Video"
)
additional_text = gr.Textbox(
placeholder="Additional text message...",
label="Additional Text",
container=False,
)
multimodal_submit = gr.Button("Send Multimodal Input", variant="primary")
clear_button = gr.Button("Clear Chat")
with gr.Column(scale=1):
gr.Markdown("## Model Capabilities")
gr.Markdown("""
**Qwen2.5-Omni can:**
- Process and understand text
- Analyze images and answer questions about them
- Transcribe and understand audio
- Analyze video content (with or without audio)
- Generate natural speech responses
""")
gr.Markdown("### Example Prompts")
gr.Examples(
examples=[
["Describe what you see in this image", "image"],
["What is being said in this audio clip?", "audio"],
["What's happening in this video?", "video"],
["Explain quantum computing in simple terms", "text"],
["Generate a short story about a robot learning to paint", "text"]
],
inputs=[text_input, gr.Textbox(visible=False)],
label="Text Examples"
)
audio_output = gr.Audio(
label="Model Speech Output",
visible=True,
autoplay=True
)
text_output = gr.Textbox(
label="Model Text Response",
interactive=False
)
# Text input handling
text_submit.click(
fn=lambda text: [{"role": "user", "content": text if text is not None else ""}],
inputs=text_input,
outputs=[chatbot],
queue=False
).then(
fn=process_input,
inputs=[placeholder_image, placeholder_audio, placeholder_video, text_input, chatbot, voice_type, enable_audio_output],
outputs=[chatbot, text_output, audio_output]
).then(
fn=lambda: "", # Clear input after submission
outputs=text_input
)
# Multimodal input handling
def prepare_multimodal_input(image, audio, video, text):
# Create a display message that indicates what was uploaded
display_message = str(text) if text is not None else ""
if image is not None:
display_message = (display_message + " " if display_message.strip() else "") + "[Image]"
if audio is not None:
display_message = (display_message + " " if display_message.strip() else "") + "[Audio]"
if video is not None:
display_message = (display_message + " " if display_message.strip() else "") + "[Video]"
if not display_message.strip():
display_message = "Multimodal content"
return [{"role": "user", "content": display_message}]
multimodal_submit.click(
fn=prepare_multimodal_input,
inputs=[image_input, audio_input, video_input, additional_text],
outputs=[chatbot],
queue=False
).then(
fn=process_input,
inputs=[image_input, audio_input, video_input, additional_text,
chatbot, voice_type, enable_audio_output],
outputs=[chatbot, text_output, audio_output]
).then(
fn=lambda: (None, None, None, ""), # Clear inputs after submission
outputs=[image_input, audio_input, video_input, additional_text]
)
# Clear chat
def clear_chat():
return [], None, None
clear_button.click(
fn=clear_chat,
outputs=[chatbot, text_output, audio_output]
)
# Update audio output visibility
def toggle_audio_output(enable_audio):
return gr.Audio(visible=enable_audio)
enable_audio_output.change(
fn=toggle_audio_output,
inputs=enable_audio_output,
outputs=audio_output
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(server_name="0.0.0.0", server_port=7860) |