Spaces:
Running
Running
Update rag_engine.py
Browse files- rag_engine.py +111 -0
rag_engine.py
CHANGED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# rag_engine.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import time
|
6 |
+
import faiss
|
7 |
+
import numpy as np
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
import requests
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
|
12 |
+
# Load environment variables
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
class RAGEngine:
|
16 |
+
def __init__(self):
|
17 |
+
# Load model for embedding
|
18 |
+
self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
19 |
+
self.embedding_dim = 384
|
20 |
+
self.index = faiss.IndexFlatL2(self.embedding_dim)
|
21 |
+
self.texts = []
|
22 |
+
|
23 |
+
# Load documents
|
24 |
+
self.documents = self.load_documents()
|
25 |
+
self.create_vector_store()
|
26 |
+
|
27 |
+
# Hugging Face API details
|
28 |
+
self.api_token = os.getenv("HF_API_TOKEN")
|
29 |
+
self.model_url = "https://api-inference.huggingface.co/models/deepseek-ai/deepseek-llm-7b-instruct"
|
30 |
+
|
31 |
+
def load_documents(self):
|
32 |
+
docs = []
|
33 |
+
data_folder = "data/"
|
34 |
+
for file_name in os.listdir(data_folder):
|
35 |
+
if file_name.endswith(".json"):
|
36 |
+
with open(os.path.join(data_folder, 'r', encoding='utf-8') as f:
|
37 |
+
data = json.load(f)
|
38 |
+
docs.extend(self.flatten_data(data))
|
39 |
+
return docs
|
40 |
+
|
41 |
+
def flatten_data(self, data):
|
42 |
+
flattened = []
|
43 |
+
if isinstance(data, list):
|
44 |
+
for item in data:
|
45 |
+
text = json.dumps(item, ensure_ascii=False)
|
46 |
+
flattened.append({"text": text})
|
47 |
+
elif isinstance(data, dict):
|
48 |
+
text = json.dumps(data, ensure_ascii=False)
|
49 |
+
flattened.append({"text": text})
|
50 |
+
return flattened
|
51 |
+
|
52 |
+
def create_vector_store(self):
|
53 |
+
embeddings = []
|
54 |
+
for doc in self.documents:
|
55 |
+
emb = self.embedder.encode(doc['text'])
|
56 |
+
embeddings.append(emb)
|
57 |
+
self.texts.append(doc['text'])
|
58 |
+
embeddings = np.array(embeddings)
|
59 |
+
self.index.add(embeddings)
|
60 |
+
|
61 |
+
def search_documents(self, query, top_k=5):
|
62 |
+
query_emb = self.embedder.encode(query)
|
63 |
+
query_emb = np.expand_dims(query_emb, axis=0)
|
64 |
+
distances, indices = self.index.search(query_emb, top_k)
|
65 |
+
results = [self.texts[i] for i in indices[0] if i < len(self.texts)]
|
66 |
+
return results
|
67 |
+
|
68 |
+
def ask_deepseek(self, context, query, retries=3, wait_time=5):
|
69 |
+
# 🔥 More detailed prompt
|
70 |
+
prompt = (
|
71 |
+
"You are an expert Honkai Star Rail Build Advisor.\n"
|
72 |
+
"You specialize in optimizing character performance based on Light Cones, Relics, Stats, Eidolons, and Team Synergies.\n"
|
73 |
+
"Provide detailed build advice for the given query using the provided context.\n"
|
74 |
+
"Always prioritize the most effective and meta-relevant recommendations.\n\n"
|
75 |
+
"Format your answer like this:\n"
|
76 |
+
"- Best Light Cones (Top 3)\n"
|
77 |
+
"- Recommended Relic Sets and Main Stats\n"
|
78 |
+
- Important Substats to Prioritize\n"
|
79 |
+
"- Optimal Eidolon Level (if necessary)\n"
|
80 |
+
"- Best Team Compositions (Synergies and Playstyle)\n"
|
81 |
+
"- Any Special Notes\n\n"
|
82 |
+
f"Context:\n{context}\n\n"
|
83 |
+
f"Question:\n{query}\n"
|
84 |
+
"Answer:"
|
85 |
+
)
|
86 |
+
headers = {
|
87 |
+
"Authorization": f"Bearer {self.api_token}",
|
88 |
+
"Content-Type": "application/json"
|
89 |
+
}
|
90 |
+
payload = {
|
91 |
+
"inputs": prompt,
|
92 |
+
"parameters": {"temperature": 0.7, "max_new_tokens": 800}
|
93 |
+
}
|
94 |
+
|
95 |
+
# 🚀 Retry logic
|
96 |
+
for attempt in range(retries):
|
97 |
+
response = requests.post(self.model_url, headers=headers, json=payload)
|
98 |
+
if response.status_code == 200:
|
99 |
+
generated_text = response.json()[0]["generated_text"]
|
100 |
+
return generated_text.split("Answer:")[-1].strip()
|
101 |
+
else:
|
102 |
+
print(f"Request failed (attempt {attempt+1}/{retries}): {response.status_code}")
|
103 |
+
if attempt < retries - 1:
|
104 |
+
time.sleep(wait_time) # Wait then retry
|
105 |
+
return f"Error: Could not get a valid response after {retries} attempts."
|
106 |
+
|
107 |
+
def answer_query(self, query):
|
108 |
+
relevant_docs = self.search_documents(query)
|
109 |
+
context = "\n".join(relevant_docs)
|
110 |
+
answer = self.ask_deepseek(context, query)
|
111 |
+
return answer
|