aika42 commited on
Commit
9ad9fa8
·
verified ·
1 Parent(s): 1d710c4

Update rag_engine.py

Browse files
Files changed (1) hide show
  1. rag_engine.py +111 -0
rag_engine.py CHANGED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # rag_engine.py
2
+
3
+ import os
4
+ import json
5
+ import time
6
+ import faiss
7
+ import numpy as np
8
+ from sentence_transformers import SentenceTransformer
9
+ import requests
10
+ from dotenv import load_dotenv
11
+
12
+ # Load environment variables
13
+ load_dotenv()
14
+
15
+ class RAGEngine:
16
+ def __init__(self):
17
+ # Load model for embedding
18
+ self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
19
+ self.embedding_dim = 384
20
+ self.index = faiss.IndexFlatL2(self.embedding_dim)
21
+ self.texts = []
22
+
23
+ # Load documents
24
+ self.documents = self.load_documents()
25
+ self.create_vector_store()
26
+
27
+ # Hugging Face API details
28
+ self.api_token = os.getenv("HF_API_TOKEN")
29
+ self.model_url = "https://api-inference.huggingface.co/models/deepseek-ai/deepseek-llm-7b-instruct"
30
+
31
+ def load_documents(self):
32
+ docs = []
33
+ data_folder = "data/"
34
+ for file_name in os.listdir(data_folder):
35
+ if file_name.endswith(".json"):
36
+ with open(os.path.join(data_folder, 'r', encoding='utf-8') as f:
37
+ data = json.load(f)
38
+ docs.extend(self.flatten_data(data))
39
+ return docs
40
+
41
+ def flatten_data(self, data):
42
+ flattened = []
43
+ if isinstance(data, list):
44
+ for item in data:
45
+ text = json.dumps(item, ensure_ascii=False)
46
+ flattened.append({"text": text})
47
+ elif isinstance(data, dict):
48
+ text = json.dumps(data, ensure_ascii=False)
49
+ flattened.append({"text": text})
50
+ return flattened
51
+
52
+ def create_vector_store(self):
53
+ embeddings = []
54
+ for doc in self.documents:
55
+ emb = self.embedder.encode(doc['text'])
56
+ embeddings.append(emb)
57
+ self.texts.append(doc['text'])
58
+ embeddings = np.array(embeddings)
59
+ self.index.add(embeddings)
60
+
61
+ def search_documents(self, query, top_k=5):
62
+ query_emb = self.embedder.encode(query)
63
+ query_emb = np.expand_dims(query_emb, axis=0)
64
+ distances, indices = self.index.search(query_emb, top_k)
65
+ results = [self.texts[i] for i in indices[0] if i < len(self.texts)]
66
+ return results
67
+
68
+ def ask_deepseek(self, context, query, retries=3, wait_time=5):
69
+ # 🔥 More detailed prompt
70
+ prompt = (
71
+ "You are an expert Honkai Star Rail Build Advisor.\n"
72
+ "You specialize in optimizing character performance based on Light Cones, Relics, Stats, Eidolons, and Team Synergies.\n"
73
+ "Provide detailed build advice for the given query using the provided context.\n"
74
+ "Always prioritize the most effective and meta-relevant recommendations.\n\n"
75
+ "Format your answer like this:\n"
76
+ "- Best Light Cones (Top 3)\n"
77
+ "- Recommended Relic Sets and Main Stats\n"
78
+ - Important Substats to Prioritize\n"
79
+ "- Optimal Eidolon Level (if necessary)\n"
80
+ "- Best Team Compositions (Synergies and Playstyle)\n"
81
+ "- Any Special Notes\n\n"
82
+ f"Context:\n{context}\n\n"
83
+ f"Question:\n{query}\n"
84
+ "Answer:"
85
+ )
86
+ headers = {
87
+ "Authorization": f"Bearer {self.api_token}",
88
+ "Content-Type": "application/json"
89
+ }
90
+ payload = {
91
+ "inputs": prompt,
92
+ "parameters": {"temperature": 0.7, "max_new_tokens": 800}
93
+ }
94
+
95
+ # 🚀 Retry logic
96
+ for attempt in range(retries):
97
+ response = requests.post(self.model_url, headers=headers, json=payload)
98
+ if response.status_code == 200:
99
+ generated_text = response.json()[0]["generated_text"]
100
+ return generated_text.split("Answer:")[-1].strip()
101
+ else:
102
+ print(f"Request failed (attempt {attempt+1}/{retries}): {response.status_code}")
103
+ if attempt < retries - 1:
104
+ time.sleep(wait_time) # Wait then retry
105
+ return f"Error: Could not get a valid response after {retries} attempts."
106
+
107
+ def answer_query(self, query):
108
+ relevant_docs = self.search_documents(query)
109
+ context = "\n".join(relevant_docs)
110
+ answer = self.ask_deepseek(context, query)
111
+ return answer