Delete app.py
Browse files
app.py
DELETED
@@ -1,237 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import random
|
4 |
-
import torch
|
5 |
-
import gradio as gr
|
6 |
-
|
7 |
-
from e4e.models.psp import pSp
|
8 |
-
from util import *
|
9 |
-
from huggingface_hub import hf_hub_download
|
10 |
-
|
11 |
-
import tempfile
|
12 |
-
from argparse import Namespace
|
13 |
-
import shutil
|
14 |
-
|
15 |
-
import dlib
|
16 |
-
import numpy as np
|
17 |
-
import torchvision.transforms as transforms
|
18 |
-
from torchvision import utils
|
19 |
-
|
20 |
-
from model.sg2_model import Generator
|
21 |
-
from generate_videos import project_code_by_edit_name
|
22 |
-
import urllib.request
|
23 |
-
import clip
|
24 |
-
|
25 |
-
# Fetch image for analysis
|
26 |
-
img_url = "http://claireye.com.tw/img/230212a.jpg"
|
27 |
-
urllib.request.urlretrieve(img_url, "pose.jpg")
|
28 |
-
model_dir = "models"
|
29 |
-
os.makedirs(model_dir, exist_ok=True)
|
30 |
-
|
31 |
-
model_repos = {
|
32 |
-
"e4e": ("aijack/e4e", "e4e.pt"),
|
33 |
-
"dlib": ("aijack/jojogan", "face_landmarks.dat"),
|
34 |
-
"base": ("aijack/stylegan2", "stylegan2.pt"),
|
35 |
-
"sketch": ("aijack/sketch", "sketch.pt"),
|
36 |
-
"jojo": ("aijack/jojo", "jojo.pt"),
|
37 |
-
"art": ("aijack/art", "art.pt"),
|
38 |
-
"arcane": ("aijack/arcane", "arcane.pt")
|
39 |
-
|
40 |
-
}
|
41 |
-
|
42 |
-
interface_gan_map = {"None": None, "Masculine": ("gender", 1.0), "Feminine": ("gender", -1.0),
|
43 |
-
"Smiling": ("smile", 1.0),
|
44 |
-
"Frowning": ("smile", -1.0), "Young": ("age", -1.0), "Old": ("age", 1.0),
|
45 |
-
"Long Hair": ("hair_length", -1.0), "Short Hair": ("hair_length", 1.0)}
|
46 |
-
|
47 |
-
|
48 |
-
def get_models():
|
49 |
-
os.makedirs(model_dir, exist_ok=True)
|
50 |
-
|
51 |
-
model_paths = {}
|
52 |
-
|
53 |
-
for model_name, repo_details in model_repos.items():
|
54 |
-
download_path = hf_hub_download(repo_id=repo_details[0], filename=repo_details[1])
|
55 |
-
model_paths[model_name] = download_path
|
56 |
-
|
57 |
-
return model_paths
|
58 |
-
|
59 |
-
|
60 |
-
model_paths = get_models()
|
61 |
-
|
62 |
-
|
63 |
-
class ImageEditor(object):
|
64 |
-
def __init__(self):
|
65 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
66 |
-
|
67 |
-
latent_size = 512
|
68 |
-
n_mlp = 8
|
69 |
-
channel_mult = 2
|
70 |
-
model_size = 1024
|
71 |
-
|
72 |
-
self.generators = {}
|
73 |
-
|
74 |
-
self.model_list = [name for name in model_paths.keys() if name not in ["e4e", "dlib"]]
|
75 |
-
|
76 |
-
for model in self.model_list:
|
77 |
-
g_ema = Generator(
|
78 |
-
model_size, latent_size, n_mlp, channel_multiplier=channel_mult
|
79 |
-
).to(self.device)
|
80 |
-
|
81 |
-
checkpoint = torch.load(model_paths[model], map_location=self.device)
|
82 |
-
|
83 |
-
g_ema.load_state_dict(checkpoint["g_ema"], strict=False)
|
84 |
-
|
85 |
-
self.generators[model] = g_ema
|
86 |
-
|
87 |
-
self.experiment_args = {"model_path": model_paths["e4e"]}
|
88 |
-
self.experiment_args["transform"] = transforms.Compose(
|
89 |
-
[
|
90 |
-
transforms.Resize((256, 256)),
|
91 |
-
transforms.ToTensor(),
|
92 |
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
93 |
-
]
|
94 |
-
)
|
95 |
-
self.resize_dims = (256, 256)
|
96 |
-
|
97 |
-
model_path = self.experiment_args["model_path"]
|
98 |
-
|
99 |
-
ckpt = torch.load(model_path, map_location="cuda:0" if torch.cuda.is_available() else "cpu")
|
100 |
-
opts = ckpt["opts"]
|
101 |
-
|
102 |
-
opts["checkpoint_path"] = model_path
|
103 |
-
opts = Namespace(**opts)
|
104 |
-
|
105 |
-
self.e4e_net = pSp(opts, self.device)
|
106 |
-
self.e4e_net.eval()
|
107 |
-
|
108 |
-
self.shape_predictor = dlib.shape_predictor(
|
109 |
-
model_paths["dlib"]
|
110 |
-
)
|
111 |
-
|
112 |
-
|
113 |
-
self.clip_model, _ = clip.load("ViT-B/32", device=self.device)
|
114 |
-
|
115 |
-
print("setup complete")
|
116 |
-
|
117 |
-
def get_style_list(self):
|
118 |
-
style_list = []
|
119 |
-
|
120 |
-
for key in self.generators:
|
121 |
-
style_list.append(key)
|
122 |
-
|
123 |
-
return style_list
|
124 |
-
|
125 |
-
def invert_image(self, input_image):
|
126 |
-
input_image = self.run_alignment(str(input_image))
|
127 |
-
|
128 |
-
input_image = input_image.resize(self.resize_dims)
|
129 |
-
|
130 |
-
img_transforms = self.experiment_args["transform"]
|
131 |
-
transformed_image = img_transforms(input_image)
|
132 |
-
|
133 |
-
with torch.no_grad():
|
134 |
-
images, latents = self.run_on_batch(transformed_image.unsqueeze(0))
|
135 |
-
result_image, latent = images[0], latents[0]
|
136 |
-
|
137 |
-
inverted_latent = latent.unsqueeze(0).unsqueeze(1)
|
138 |
-
|
139 |
-
return inverted_latent
|
140 |
-
|
141 |
-
def get_generators_for_styles(self, output_styles, loop_styles=False):
|
142 |
-
|
143 |
-
if "base" in output_styles: # always start with base if chosen
|
144 |
-
output_styles.insert(0, output_styles.pop(output_styles.index("base")))
|
145 |
-
if loop_styles:
|
146 |
-
output_styles.append(output_styles[0])
|
147 |
-
|
148 |
-
return [self.generators[style] for style in output_styles]
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
def get_target_latent(self, source_latent, alter, generators):
|
153 |
-
np_source_latent = source_latent.squeeze(0).cpu().detach().numpy()
|
154 |
-
if alter == "None":
|
155 |
-
return random.choice([source_latent.squeeze(0),] * max((len(generators) - 1), 1))
|
156 |
-
edit = interface_gan_map[alter]
|
157 |
-
projected_code_np = project_code_by_edit_name(np_source_latent, edit[0], edit[1])
|
158 |
-
return torch.from_numpy(projected_code_np).float().to(self.device)
|
159 |
-
|
160 |
-
def edit_image(self, input, output_styles, edit_choices):
|
161 |
-
return self.predict(input, output_styles, edit_choices=edit_choices)
|
162 |
-
|
163 |
-
def predict(
|
164 |
-
self,
|
165 |
-
input, # Input image path
|
166 |
-
output_styles, # Style checkbox options.
|
167 |
-
loop_styles=False, # Loop back to the initial style
|
168 |
-
edit_choices=None, # Optional dictionary with edit choice arguments
|
169 |
-
):
|
170 |
-
|
171 |
-
if edit_choices is None:
|
172 |
-
edit_choices = {"edit_type": "None"}
|
173 |
-
|
174 |
-
# @title Align image
|
175 |
-
out_dir = tempfile.mkdtemp()
|
176 |
-
|
177 |
-
inverted_latent = self.invert_image(input)
|
178 |
-
generators = self.get_generators_for_styles(output_styles, loop_styles)
|
179 |
-
output_paths = []
|
180 |
-
|
181 |
-
with torch.no_grad():
|
182 |
-
for g_ema in generators:
|
183 |
-
latent_for_gen = self.get_target_latent(inverted_latent, edit_choices, generators)
|
184 |
-
|
185 |
-
img, _ = g_ema([latent_for_gen], input_is_latent=True, truncation=1, randomize_noise=False)
|
186 |
-
|
187 |
-
output_path = os.path.join(out_dir, f"out_{len(output_paths)}.jpg")
|
188 |
-
utils.save_image(img, output_path, nrow=1, normalize=True, range=(-1, 1))
|
189 |
-
|
190 |
-
output_paths.append(output_path)
|
191 |
-
|
192 |
-
return output_paths
|
193 |
-
|
194 |
-
|
195 |
-
def run_alignment(self, image_path):
|
196 |
-
aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor)
|
197 |
-
print("Aligned image has shape: {}".format(aligned_image.size))
|
198 |
-
return aligned_image
|
199 |
-
|
200 |
-
def run_on_batch(self, inputs):
|
201 |
-
images, latents = self.e4e_net(
|
202 |
-
inputs.to(self.device).float(), randomize_noise=False, return_latents=True
|
203 |
-
)
|
204 |
-
return images, latents
|
205 |
-
|
206 |
-
|
207 |
-
editor = ImageEditor()
|
208 |
-
|
209 |
-
blocks = gr.Blocks(theme="darkdefault")
|
210 |
-
|
211 |
-
with blocks:
|
212 |
-
gr.Markdown("<h1><center>Holiday Filters </center></h1>")
|
213 |
-
gr.Markdown(
|
214 |
-
"<div>Upload an image of your face, pick your desired output styles, pick any modifiers, and apply StyleGAN-based editing.</div>"
|
215 |
-
)
|
216 |
-
with gr.Row():
|
217 |
-
with gr.Column():
|
218 |
-
input_img = gr.Image(type="filepath", label="Input image")
|
219 |
-
with gr.Column():
|
220 |
-
style_choice = gr.CheckboxGroup(choices=editor.get_style_list(), value=editor.get_style_list(), type="value", label="Styles")
|
221 |
-
alter = gr.Dropdown(
|
222 |
-
choices=["None", "Masculine", "Feminine", "Smiling", "Frowning", "Young", "Old", "Short Hair",
|
223 |
-
"Long Hair"], value="None", label="Additional Modifiers")
|
224 |
-
img_button = gr.Button("Edit Image")
|
225 |
-
with gr.Row():
|
226 |
-
img_output = gr.Gallery(label="Output Images")
|
227 |
-
img_output.style(grid=(3, 3, 4, 4, 6, 6))
|
228 |
-
|
229 |
-
img_button.click(fn=editor.edit_image, inputs=[input_img, style_choice, alter], outputs=img_output)
|
230 |
-
ex = gr.Examples(examples=[['pose.jpg', editor.get_style_list(), "Smiling"],['pose.jpg', editor.get_style_list(), "Long Hair"]], fn=editor.edit_image, inputs=[input_img, style_choice, alter],
|
231 |
-
outputs=[img_output], cache_examples=True,
|
232 |
-
run_on_click=True)
|
233 |
-
ex.dataset.headers = [""]
|
234 |
-
article = "<p style='text-align: center'><a href='http://claireye.com.tw'>Claireye</a> | 2023</p>"
|
235 |
-
gr.Markdown(article)
|
236 |
-
|
237 |
-
blocks.launch(enable_queue=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|