|
import gradio as gr |
|
import wave |
|
import numpy as np |
|
from io import BytesIO |
|
from huggingface_hub import hf_hub_download |
|
from piper import PiperVoice |
|
|
|
def synthesize_speech(text): |
|
model_path = hf_hub_download(repo_id="aigmixer/speaker_00", filename="resolve/main/speaker_00_model.onnx") |
|
config_path = hf_hub_download(repo_id="aigmixer/speaker_00", filename="resolve/main/speaker_00_model.onnx.json") |
|
voice = PiperVoice.load(model_path, config_path) |
|
|
|
|
|
buffer = BytesIO() |
|
with wave.open(buffer, 'wb') as wav_file: |
|
wav_file.setframerate(voice.config.sample_rate) |
|
wav_file.setsampwidth(2) |
|
wav_file.setnchannels(1) |
|
|
|
|
|
voice.synthesize(text, wav_file) |
|
|
|
|
|
buffer.seek(0) |
|
audio_data = np.frombuffer(buffer.read(), dtype=np.int16) |
|
|
|
return audio_data.tobytes() |
|
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Base()) as blocks: |
|
gr.Markdown("# Text to Speech Synthesizer") |
|
gr.Markdown("Enter text to synthesize it into speech using PiperVoice.") |
|
input_text = gr.Textbox(label="Input Text") |
|
output_audio = gr.Audio(label="Synthesized Speech", type="numpy") |
|
submit_button = gr.Button("Synthesize") |
|
|
|
submit_button.click(synthesize_speech, inputs=input_text, outputs=output_audio) |
|
|
|
|
|
blocks.launch() |
|
|