Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ def feifeimodload():
|
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
|
19 |
pipe = DiffusionPipeline.from_pretrained(
|
20 |
-
"
|
21 |
).to(device)
|
22 |
|
23 |
pipe.load_lora_weights(
|
@@ -25,20 +25,8 @@ def feifeimodload():
|
|
25 |
adapter_name="feifei",
|
26 |
)
|
27 |
|
28 |
-
pipe.set_adapters(
|
29 |
-
["feifei"],
|
30 |
-
adapter_weights=[0.75],
|
31 |
-
)
|
32 |
-
|
33 |
-
pipe.fuse_lora(
|
34 |
-
adapter_name=["feifei"],
|
35 |
-
lora_scale=1.0,
|
36 |
-
)
|
37 |
-
|
38 |
-
#pipe.enable_sequential_cpu_offload()
|
39 |
pipe.vae.enable_slicing()
|
40 |
pipe.vae.enable_tiling()
|
41 |
-
pipe.unload_lora_weights()
|
42 |
torch.cuda.empty_cache()
|
43 |
return pipe
|
44 |
|
@@ -47,15 +35,20 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
47 |
MAX_IMAGE_SIZE = 2048
|
48 |
|
49 |
@spaces.GPU()
|
50 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
51 |
if randomize_seed:
|
52 |
seed = random.randint(0, MAX_SEED)
|
53 |
generator = torch.Generator().manual_seed(seed)
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
59 |
image = pipe(
|
60 |
prompt = prompt,
|
61 |
width = width,
|
@@ -140,7 +133,6 @@ with gr.Blocks(css=css) as demo:
|
|
140 |
|
141 |
with gr.Row():
|
142 |
|
143 |
-
|
144 |
num_inference_steps = gr.Slider(
|
145 |
label="Number of inference steps",
|
146 |
minimum=1,
|
@@ -148,6 +140,15 @@ with gr.Blocks(css=css) as demo:
|
|
148 |
step=1,
|
149 |
value=4,
|
150 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
gr.Examples(
|
153 |
examples = examples,
|
@@ -160,7 +161,7 @@ with gr.Blocks(css=css) as demo:
|
|
160 |
gr.on(
|
161 |
triggers=[run_button.click, prompt.submit],
|
162 |
fn = infer,
|
163 |
-
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
|
164 |
outputs = [result, seed]
|
165 |
)
|
166 |
|
|
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
|
19 |
pipe = DiffusionPipeline.from_pretrained(
|
20 |
+
"aifeifei798/DarkIdol-flux-v1", torch_dtype=dtype
|
21 |
).to(device)
|
22 |
|
23 |
pipe.load_lora_weights(
|
|
|
25 |
adapter_name="feifei",
|
26 |
)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
pipe.vae.enable_slicing()
|
29 |
pipe.vae.enable_tiling()
|
|
|
30 |
torch.cuda.empty_cache()
|
31 |
return pipe
|
32 |
|
|
|
35 |
MAX_IMAGE_SIZE = 2048
|
36 |
|
37 |
@spaces.GPU()
|
38 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_feifei=0.35, progress=gr.Progress(track_tqdm=True)):
|
39 |
if randomize_seed:
|
40 |
seed = random.randint(0, MAX_SEED)
|
41 |
generator = torch.Generator().manual_seed(seed)
|
42 |
+
|
43 |
+
pipe.set_adapters(
|
44 |
+
["feifei"],
|
45 |
+
adapter_weights=[num_feifei],
|
46 |
+
)
|
47 |
+
|
48 |
+
pipe.fuse_lora(
|
49 |
+
adapter_name=["feifei"],
|
50 |
+
lora_scale=1.0,
|
51 |
+
)
|
52 |
image = pipe(
|
53 |
prompt = prompt,
|
54 |
width = width,
|
|
|
133 |
|
134 |
with gr.Row():
|
135 |
|
|
|
136 |
num_inference_steps = gr.Slider(
|
137 |
label="Number of inference steps",
|
138 |
minimum=1,
|
|
|
140 |
step=1,
|
141 |
value=4,
|
142 |
)
|
143 |
+
|
144 |
+
with gr.Row():
|
145 |
+
num_feifei = gr.Slider(
|
146 |
+
label="FeiFei",
|
147 |
+
minimum=0,
|
148 |
+
maximum=2,
|
149 |
+
step=0.05,
|
150 |
+
value=0.35,
|
151 |
+
)
|
152 |
|
153 |
gr.Examples(
|
154 |
examples = examples,
|
|
|
161 |
gr.on(
|
162 |
triggers=[run_button.click, prompt.submit],
|
163 |
fn = infer,
|
164 |
+
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps, num_feifei],
|
165 |
outputs = [result, seed]
|
166 |
)
|
167 |
|