Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,88 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
|
|
|
5 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
6 |
-
print("Access token loaded.")
|
7 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
|
|
8 |
client = OpenAI(
|
9 |
base_url="https://api-inference.huggingface.co/v1/",
|
10 |
api_key=ACCESS_TOKEN,
|
11 |
)
|
12 |
print("OpenAI client initialized.")
|
13 |
|
14 |
-
# Search Tool
|
15 |
-
from langchain_community.tools.tavily_search import TavilySearchResults
|
16 |
-
search_tool = TavilySearchResults(tavily_api_key=TAVILY_API_KEY)
|
17 |
# Define a comprehensive system prompt
|
18 |
SYSTEM_PROMPT = """
|
19 |
You are a highly knowledgeable and reliable Crypto Trading Advisor and Analyzer.
|
20 |
Your goal is to assist users in understanding, analyzing, and making informed decisions about cryptocurrency trading.
|
21 |
-
You provide accurate, concise, and actionable advice based on real-time data, historical trends, and established best practices.
|
22 |
"""
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Function to handle chatbot responses
|
25 |
def respond(
|
26 |
message,
|
27 |
-
history: list[tuple[str, str]]
|
28 |
-
max_tokens,
|
29 |
-
temperature,
|
30 |
-
top_p,
|
31 |
-
frequency_penalty,
|
32 |
-
seed
|
33 |
):
|
34 |
print(f"Received message: {message}")
|
35 |
print(f"History: {history}")
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
for val in history:
|
46 |
user_part = val[0]
|
47 |
assistant_part = val[1]
|
@@ -50,13 +91,11 @@ def respond(
|
|
50 |
if assistant_part:
|
51 |
messages.append({"role": "assistant", "content": assistant_part})
|
52 |
|
53 |
-
#
|
54 |
messages.append({"role": "user", "content": message})
|
55 |
|
56 |
# Start response generation
|
57 |
response = ""
|
58 |
-
print("Sending request to OpenAI API.")
|
59 |
-
|
60 |
for message_chunk in client.chat.completions.create(
|
61 |
model="meta-llama/Llama-3.3-70B-Instruct",
|
62 |
max_tokens=max_tokens,
|
@@ -76,54 +115,11 @@ def respond(
|
|
76 |
# Gradio UI
|
77 |
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Ask about crypto trading or analysis.", likeable=True)
|
78 |
|
79 |
-
max_tokens_slider = gr.Slider(
|
80 |
-
minimum=1,
|
81 |
-
maximum=4096,
|
82 |
-
value=512,
|
83 |
-
step=1,
|
84 |
-
label="Max new tokens"
|
85 |
-
)
|
86 |
-
temperature_slider = gr.Slider(
|
87 |
-
minimum=0.1,
|
88 |
-
maximum=4.0,
|
89 |
-
value=0.7,
|
90 |
-
step=0.1,
|
91 |
-
label="Temperature"
|
92 |
-
)
|
93 |
-
top_p_slider = gr.Slider(
|
94 |
-
minimum=0.1,
|
95 |
-
maximum=1.0,
|
96 |
-
value=0.95,
|
97 |
-
step=0.05,
|
98 |
-
label="Top-P"
|
99 |
-
)
|
100 |
-
frequency_penalty_slider = gr.Slider(
|
101 |
-
minimum=-2.0,
|
102 |
-
maximum=2.0,
|
103 |
-
value=0.0,
|
104 |
-
step=0.1,
|
105 |
-
label="Frequency Penalty"
|
106 |
-
)
|
107 |
-
seed_slider = gr.Slider(
|
108 |
-
minimum=-1,
|
109 |
-
maximum=65535,
|
110 |
-
value=-1,
|
111 |
-
step=1,
|
112 |
-
label="Seed (-1 for random)"
|
113 |
-
)
|
114 |
-
|
115 |
demo = gr.ChatInterface(
|
116 |
fn=respond,
|
117 |
-
additional_inputs=[
|
118 |
-
max_tokens_slider,
|
119 |
-
temperature_slider,
|
120 |
-
top_p_slider,
|
121 |
-
frequency_penalty_slider,
|
122 |
-
seed_slider,
|
123 |
-
],
|
124 |
fill_height=True,
|
125 |
chatbot=chatbot,
|
126 |
)
|
127 |
|
128 |
if __name__ == "__main__":
|
129 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
from openai import OpenAI
|
4 |
import os
|
5 |
|
6 |
+
# Load your API keys from environment variables
|
7 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
|
|
8 |
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
9 |
+
print("Access token loaded.")
|
10 |
client = OpenAI(
|
11 |
base_url="https://api-inference.huggingface.co/v1/",
|
12 |
api_key=ACCESS_TOKEN,
|
13 |
)
|
14 |
print("OpenAI client initialized.")
|
15 |
|
|
|
|
|
|
|
16 |
# Define a comprehensive system prompt
|
17 |
SYSTEM_PROMPT = """
|
18 |
You are a highly knowledgeable and reliable Crypto Trading Advisor and Analyzer.
|
19 |
Your goal is to assist users in understanding, analyzing, and making informed decisions about cryptocurrency trading.
|
|
|
20 |
"""
|
21 |
|
22 |
+
# Binance API - Fetch Market Data
|
23 |
+
def get_binance_data(symbol: str):
|
24 |
+
# Base URL for Binance API
|
25 |
+
url = f'https://api.binance.com/api/v3/ticker/24hr?symbol={symbol.upper()}'
|
26 |
+
|
27 |
+
try:
|
28 |
+
# Send GET request to Binance API
|
29 |
+
response = requests.get(url)
|
30 |
+
data = response.json()
|
31 |
+
|
32 |
+
if response.status_code != 200:
|
33 |
+
return {"error": "Error fetching data from Binance"}
|
34 |
+
|
35 |
+
# Extract relevant information from the API response
|
36 |
+
price = float(data['lastPrice'])
|
37 |
+
volume = float(data['volume'])
|
38 |
+
market_cap = float(data['quoteVolume']) # Binance doesn't provide market cap directly, so we use quote volume as a proxy
|
39 |
+
change_24h = float(data['priceChangePercent'])
|
40 |
+
|
41 |
+
return {
|
42 |
+
'price': price,
|
43 |
+
'volume': volume,
|
44 |
+
'market_cap': market_cap,
|
45 |
+
'change_24h': change_24h
|
46 |
+
}
|
47 |
+
except Exception as e:
|
48 |
+
return {"error": f"An error occurred: {str(e)}"}
|
49 |
+
|
50 |
# Function to handle chatbot responses
|
51 |
def respond(
|
52 |
message,
|
53 |
+
history: list[tuple[str, str]]
|
|
|
|
|
|
|
|
|
|
|
54 |
):
|
55 |
print(f"Received message: {message}")
|
56 |
print(f"History: {history}")
|
57 |
|
58 |
+
# Default values for the parameters
|
59 |
+
max_tokens = 1024
|
60 |
+
temperature = 0.3
|
61 |
+
top_p = 0.95
|
62 |
+
frequency_penalty = 0.0
|
63 |
+
seed = None
|
64 |
|
65 |
+
if "crypto" in message.lower():
|
66 |
+
# Extract the cryptocurrency symbol from the message
|
67 |
+
crypto_symbol = message.split()[0].upper() + "USDT" # Example: "Bitcoin" -> "BTCUSDT"
|
68 |
+
market_data = get_binance_data(crypto_symbol)
|
69 |
+
|
70 |
+
if 'error' in market_data:
|
71 |
+
response = "Error fetching data for this cryptocurrency."
|
72 |
+
yield response
|
73 |
+
return
|
74 |
|
75 |
+
# Include real-time data in the system prompt
|
76 |
+
SYSTEM_PROMPT += f"""
|
77 |
+
Current Data for {crypto_symbol}:
|
78 |
+
- Price: ${market_data['price']}
|
79 |
+
- 24h Change: {market_data['change_24h']}%
|
80 |
+
- Volume: {market_data['volume']}
|
81 |
+
- Market Cap (proxy via quote volume): ${market_data['market_cap']}
|
82 |
+
"""
|
83 |
+
|
84 |
+
# Prepare messages for the assistant
|
85 |
+
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
86 |
for val in history:
|
87 |
user_part = val[0]
|
88 |
assistant_part = val[1]
|
|
|
91 |
if assistant_part:
|
92 |
messages.append({"role": "assistant", "content": assistant_part})
|
93 |
|
94 |
+
# Add the latest user message
|
95 |
messages.append({"role": "user", "content": message})
|
96 |
|
97 |
# Start response generation
|
98 |
response = ""
|
|
|
|
|
99 |
for message_chunk in client.chat.completions.create(
|
100 |
model="meta-llama/Llama-3.3-70B-Instruct",
|
101 |
max_tokens=max_tokens,
|
|
|
115 |
# Gradio UI
|
116 |
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Ask about crypto trading or analysis.", likeable=True)
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
demo = gr.ChatInterface(
|
119 |
fn=respond,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
fill_height=True,
|
121 |
chatbot=chatbot,
|
122 |
)
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
+
demo.launch()
|