Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class LineExtractor(nn.Module): | |
def __init__(self, chan_in, chan_out, bilinear=False): | |
super().__init__() | |
self.bilinear = bilinear | |
self.inc = (DoubleConv(chan_in, 64)) | |
self.down1 = (Down(64, 128)) | |
self.down2 = (Down(128, 256)) | |
self.down3 = (Down(256, 512)) | |
factor = 2 if bilinear else 1 | |
self.down4 = (Down(512, 1024 // factor)) | |
self.up1 = (Up(1024, 512 // factor, bilinear)) | |
self.up2 = (Up(512, 256 // factor, bilinear)) | |
self.up3 = (Up(256, 128 // factor, bilinear)) | |
self.up4 = (Up(128, 64, bilinear)) | |
self.outc = (OutConv(64, chan_out)) | |
def forward(self, x): | |
x1 = self.inc(x) | |
x2 = self.down1(x1) | |
x3 = self.down2(x2) | |
x4 = self.down3(x3) | |
x5 = self.down4(x4) | |
x = self.up1(x5, x4) | |
x = self.up2(x, x3) | |
x = self.up3(x, x2) | |
x = self.up4(x, x1) | |
logits = self.outc(x) | |
return logits | |
def use_checkpointing(self): | |
self.inc = torch.utils.checkpoint(self.inc) | |
self.down1 = torch.utils.checkpoint(self.down1) | |
self.down2 = torch.utils.checkpoint(self.down2) | |
self.down3 = torch.utils.checkpoint(self.down3) | |
self.down4 = torch.utils.checkpoint(self.down4) | |
self.up1 = torch.utils.checkpoint(self.up1) | |
self.up2 = torch.utils.checkpoint(self.up2) | |
self.up3 = torch.utils.checkpoint(self.up3) | |
self.up4 = torch.utils.checkpoint(self.up4) | |
self.outc = torch.utils.checkpoint(self.outc) | |
class DoubleConv(nn.Module): | |
def __init__(self, in_channels, out_channels, mid_channels=None): | |
super().__init__() | |
if not mid_channels: | |
mid_channels = out_channels | |
self.double_conv = nn.Sequential( | |
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False), | |
nn.BatchNorm2d(mid_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True) | |
) | |
def forward(self, x): | |
return self.double_conv(x) | |
class Down(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super().__init__() | |
self.maxpool_conv = nn.Sequential( | |
nn.MaxPool2d(2), | |
DoubleConv(in_channels, out_channels) | |
) | |
def forward(self, x): | |
return self.maxpool_conv(x) | |
class Up(nn.Module): | |
def __init__(self, in_channels, out_channels, bilinear=True): | |
super().__init__() | |
if bilinear: | |
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) | |
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2) | |
else: | |
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2) | |
self.conv = DoubleConv(in_channels, out_channels) | |
def forward(self, x1, x2): | |
x1 = self.up(x1) | |
diffY = x2.size()[2] - x1.size()[2] | |
diffX = x2.size()[3] - x1.size()[3] | |
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, | |
diffY // 2, diffY - diffY // 2]) | |
x = torch.cat([x2, x1], dim=1) | |
return self.conv(x) | |
class OutConv(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super(OutConv, self).__init__() | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) | |
def forward(self, x): | |
return self.conv(x) | |