File size: 5,317 Bytes
9a514db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import spaces

import os
import cv2
import argparse
import numpy as np
import gradio as gr
import numpy as np
from tqdm import tqdm
from PIL import Image, ImageEnhance

import torch
from torch.amp import autocast
import torch.nn.functional as F

from network.line_extractor import LineExtractor

def resize(image, max_size=3840):
    h, w = image.shape[:2]
    if h > w:
        h, w = (max_size, int(w * max_size / h))
    else:
        h, w = (int(h * max_size / w), max_size)
    return cv2.resize(image, (w, h))

def increase_sharpness(img, factor=6.0):
    image = Image.fromarray(img)
    enhancer = ImageEnhance.Sharpness(image)
    return np.array(enhancer.enhance(factor))

def load_model(mode):
    if mode == 'basic':
        model = LineExtractor(3, 1, True)
    elif mode == 'detail':
        model = LineExtractor(2, 1, True)
    
    path_model = os.path.join('weights', f'{mode}.pth')
    model.load_state_dict(torch.load(path_model, weights_only=True))

    for param in model.parameters():
        param.requires_grad = False
    model.eval()
    
    return model

def process_image(image, mode, binarize, threshold, fp16=True):
    if image is None:
        return None
    
    binarize_value = threshold if binarize else -1
    args = argparse.Namespace(mode=mode, binarize=binarize_value, fp16=fp16, device="cuda:0")
    
    image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    if image.shape[0] > 1920 or image.shape[1] > 1920:
        image = resize(image)
    
    return inference(image, args)
    
def process_video(path_in, path_out, fourcc='mp4v', **kwargs):
    video = cv2.VideoCapture(path_in)
    fps = video.get(cv2.CAP_PROP_FPS)
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    
    fourcc = cv2.VideoWriter_fourcc(*fourcc)
    video_out = cv2.VideoWriter(path_out, fourcc, fps, (width, height))
    
    for _ in tqdm(range(total_frames), desc='Processing Video'):
        ret, frame = video.read()
        if not ret:
            break
        
        img = inference(frame, **kwargs)
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        video_out.write(img)
        
    video.release()
    video_out.release()

@spaces.GPU(duration=60)
def inference(img: np.ndarray, args):
    if args.mode == 'basic':
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = increase_sharpness(img)
        img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).float().to(args.device) / 255.
        x_in = img
    else:
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        
        sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
        sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
        sobel = cv2.magnitude(sobelx, sobely)
        sobel = 255 - cv2.normalize(sobel, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1)
    
        img = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).float().to(args.device) / 255.
        sobel = torch.from_numpy(sobel).unsqueeze(0).unsqueeze(0).float().to(args.device) / 255.
    
        x_in = torch.cat([img, sobel], dim=1)

    B, C, H, W = x_in.shape
    pad_h = 8 - (H % 8)
    pad_w = 8 - (W % 8)
    x_in = F.pad(x_in, (0, pad_w, 0, pad_h), mode='reflect')

    with torch.no_grad(), autocast(enabled=args.fp16, device_type='cuda:0'):
        if args.mode == 'basic':
            pred = model_basic(x_in)
        elif args.mode == 'detail':
            pred = model_detail(x_in)
    pred = pred[:, :, :H, :W]
    if args.binarize != -1:
        pred = (pred > args.binarize).float()
    
    return np.clip((pred[0, 0].cpu().numpy() * 255) + 0.5, 0, 255).astype(np.uint8)



model_basic = load_model("basic").to("cuda:0")
model_detail = load_model("detail").to("cuda:0")

with gr.Blocks() as demo:
    gr.Markdown("# AniLines - Anime Line Extractor Demo")
    gr.Markdown("For video and batch processing, please refer to the [project page](https://github.com/zhenglinpan/AniLines-Anime-Line-Extractor)")

    with gr.Tabs():
        with gr.Tab("Image Processing"):
            gr.Markdown("## Process Images")
            gr.Markdown("*Online demo resizes image to a max of 4K if larger.")
            with gr.Row():
                image_input = gr.Image(type="pil", label="Upload Image")
                image_output = gr.Image(label="Processed Output")

            mode_dropdown = gr.Radio(["basic", "detail"], value="detail", label="Processing Mode")
            binarize_checkbox = gr.Checkbox(label="Binarize", value=False)
            binarize_slider = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.75, label="Binarization Threshold (-1 for auto)", visible=False)
            binarize_checkbox.change(lambda binarize: gr.update(visible=binarize), inputs=binarize_checkbox, outputs=binarize_slider)

            process_button = gr.Button("Process")

            gr.Examples(
                examples=["example.png", "example2.jpg"],
                inputs=image_input,
                outputs=image_input
            )
            
            process_button.click(process_image, 
                                 inputs=[image_input, mode_dropdown, binarize_checkbox, binarize_slider], 
                                 outputs=image_output)

demo.queue().launch()