Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,317 Bytes
9a514db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import spaces
import os
import cv2
import argparse
import numpy as np
import gradio as gr
import numpy as np
from tqdm import tqdm
from PIL import Image, ImageEnhance
import torch
from torch.amp import autocast
import torch.nn.functional as F
from network.line_extractor import LineExtractor
def resize(image, max_size=3840):
h, w = image.shape[:2]
if h > w:
h, w = (max_size, int(w * max_size / h))
else:
h, w = (int(h * max_size / w), max_size)
return cv2.resize(image, (w, h))
def increase_sharpness(img, factor=6.0):
image = Image.fromarray(img)
enhancer = ImageEnhance.Sharpness(image)
return np.array(enhancer.enhance(factor))
def load_model(mode):
if mode == 'basic':
model = LineExtractor(3, 1, True)
elif mode == 'detail':
model = LineExtractor(2, 1, True)
path_model = os.path.join('weights', f'{mode}.pth')
model.load_state_dict(torch.load(path_model, weights_only=True))
for param in model.parameters():
param.requires_grad = False
model.eval()
return model
def process_image(image, mode, binarize, threshold, fp16=True):
if image is None:
return None
binarize_value = threshold if binarize else -1
args = argparse.Namespace(mode=mode, binarize=binarize_value, fp16=fp16, device="cuda:0")
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
if image.shape[0] > 1920 or image.shape[1] > 1920:
image = resize(image)
return inference(image, args)
def process_video(path_in, path_out, fourcc='mp4v', **kwargs):
video = cv2.VideoCapture(path_in)
fps = video.get(cv2.CAP_PROP_FPS)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(*fourcc)
video_out = cv2.VideoWriter(path_out, fourcc, fps, (width, height))
for _ in tqdm(range(total_frames), desc='Processing Video'):
ret, frame = video.read()
if not ret:
break
img = inference(frame, **kwargs)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
video_out.write(img)
video.release()
video_out.release()
@spaces.GPU(duration=60)
def inference(img: np.ndarray, args):
if args.mode == 'basic':
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = increase_sharpness(img)
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).float().to(args.device) / 255.
x_in = img
else:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
sobel = cv2.magnitude(sobelx, sobely)
sobel = 255 - cv2.normalize(sobel, None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1)
img = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).float().to(args.device) / 255.
sobel = torch.from_numpy(sobel).unsqueeze(0).unsqueeze(0).float().to(args.device) / 255.
x_in = torch.cat([img, sobel], dim=1)
B, C, H, W = x_in.shape
pad_h = 8 - (H % 8)
pad_w = 8 - (W % 8)
x_in = F.pad(x_in, (0, pad_w, 0, pad_h), mode='reflect')
with torch.no_grad(), autocast(enabled=args.fp16, device_type='cuda:0'):
if args.mode == 'basic':
pred = model_basic(x_in)
elif args.mode == 'detail':
pred = model_detail(x_in)
pred = pred[:, :, :H, :W]
if args.binarize != -1:
pred = (pred > args.binarize).float()
return np.clip((pred[0, 0].cpu().numpy() * 255) + 0.5, 0, 255).astype(np.uint8)
model_basic = load_model("basic").to("cuda:0")
model_detail = load_model("detail").to("cuda:0")
with gr.Blocks() as demo:
gr.Markdown("# AniLines - Anime Line Extractor Demo")
gr.Markdown("For video and batch processing, please refer to the [project page](https://github.com/zhenglinpan/AniLines-Anime-Line-Extractor)")
with gr.Tabs():
with gr.Tab("Image Processing"):
gr.Markdown("## Process Images")
gr.Markdown("*Online demo resizes image to a max of 4K if larger.")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload Image")
image_output = gr.Image(label="Processed Output")
mode_dropdown = gr.Radio(["basic", "detail"], value="detail", label="Processing Mode")
binarize_checkbox = gr.Checkbox(label="Binarize", value=False)
binarize_slider = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.75, label="Binarization Threshold (-1 for auto)", visible=False)
binarize_checkbox.change(lambda binarize: gr.update(visible=binarize), inputs=binarize_checkbox, outputs=binarize_slider)
process_button = gr.Button("Process")
gr.Examples(
examples=["example.png", "example2.jpg"],
inputs=image_input,
outputs=image_input
)
process_button.click(process_image,
inputs=[image_input, mode_dropdown, binarize_checkbox, binarize_slider],
outputs=image_output)
demo.queue().launch()
|