Spaces:
Runtime error
Runtime error
Update video_detection.py
Browse files- video_detection.py +49 -7
video_detection.py
CHANGED
@@ -6,6 +6,7 @@ import numpy as np
|
|
6 |
import uuid
|
7 |
|
8 |
model = YOLO("model/yolo11n_6-2-25.pt")
|
|
|
9 |
|
10 |
def draw_boxes(frame, results):
|
11 |
for r in results:
|
@@ -31,12 +32,6 @@ def draw_boxes(frame, results):
|
|
31 |
return frame
|
32 |
|
33 |
def video_detection(cap):
|
34 |
-
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
35 |
-
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
36 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
37 |
-
|
38 |
-
cap = cv2.VideoCapture(video)
|
39 |
-
|
40 |
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
|
41 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
42 |
|
@@ -51,7 +46,54 @@ def video_detection(cap):
|
|
51 |
name = f"output_{uuid.uuid4()}.mp4"
|
52 |
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore
|
53 |
batch = []
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"""
|
56 |
#@spaces.GPU
|
57 |
def video_detection(cap):
|
|
|
6 |
import uuid
|
7 |
|
8 |
model = YOLO("model/yolo11n_6-2-25.pt")
|
9 |
+
SUBSAMPLE = 2
|
10 |
|
11 |
def draw_boxes(frame, results):
|
12 |
for r in results:
|
|
|
32 |
return frame
|
33 |
|
34 |
def video_detection(cap):
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
|
36 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
37 |
|
|
|
46 |
name = f"output_{uuid.uuid4()}.mp4"
|
47 |
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore
|
48 |
batch = []
|
49 |
+
while iterating:
|
50 |
+
frame = cv2.resize( frame, (0,0), fx=0.5, fy=0.5)
|
51 |
+
#frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
52 |
+
if n_frames % SUBSAMPLE == 0:
|
53 |
+
batch.append(frame)
|
54 |
+
if len(batch) == 2 * desired_fps:
|
55 |
+
#inputs = image_processor(images=batch, return_tensors="pt").to("cuda")
|
56 |
+
|
57 |
+
print(f"starting batch of size {len(batch)}")
|
58 |
+
start = time.time()
|
59 |
+
#with torch.no_grad():
|
60 |
+
# outputs = model(**inputs)
|
61 |
+
results = model(source=batch, stream=True)
|
62 |
+
end = time.time()
|
63 |
+
print("time taken for inference", end - start)
|
64 |
+
|
65 |
+
start = time.time()
|
66 |
+
#boxes = image_processor.post_process_object_detection(
|
67 |
+
# outputs,
|
68 |
+
# target_sizes=torch.tensor([(height, width)] * len(batch)),
|
69 |
+
# threshold=conf_threshold)
|
70 |
+
"""
|
71 |
+
for i, (array, box) in enumerate(zip(batch, boxes)):
|
72 |
+
pil_image = draw_bounding_boxes(Image.fromarray(array), box, model, conf_threshold)
|
73 |
+
frame = np.array(pil_image)
|
74 |
+
# Convert RGB to BGR
|
75 |
+
frame = frame[:, :, ::-1].copy()
|
76 |
+
segment_file.write(frame)
|
77 |
+
"""
|
78 |
+
for i, r in enumerate(results):
|
79 |
+
# Plot results image
|
80 |
+
im_bgr = r.plot() # BGR-order numpy array
|
81 |
+
im_rgb = Image.fromarray(im_bgr[..., ::-1]) # RGB-order PIL image
|
82 |
+
frame = np.array(im_rgb)
|
83 |
+
# Convert RGB to BGR
|
84 |
+
frame = frame[:, :, ::-1].copy()
|
85 |
+
segment_file.write(frame)
|
86 |
+
|
87 |
+
batch = []
|
88 |
+
segment_file.release()
|
89 |
+
yield name
|
90 |
+
end = time.time()
|
91 |
+
print("time taken for processing boxes", end - start)
|
92 |
+
name = f"output_{uuid.uuid4()}.mp4"
|
93 |
+
segment_file = cv2.VideoWriter(name, video_codec, desired_fps, (width, height)) # type: ignore
|
94 |
+
|
95 |
+
iterating, frame = cap.read()
|
96 |
+
n_frames += 1
|
97 |
"""
|
98 |
#@spaces.GPU
|
99 |
def video_detection(cap):
|