Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,19 +13,19 @@ model_asr = Wav2Vec2ForCTC.from_pretrained(model_name)
|
|
13 |
model_name = 'qanastek/XLMRoberta-Alexa-Intents-Classification'
|
14 |
tokenizer_intent = AutoTokenizer.from_pretrained(model_name)
|
15 |
model_intent = AutoModelForSequenceClassification.from_pretrained(model_name)
|
16 |
-
classifier_intent = TextClassificationPipeline(model=model_intent, tokenizer=tokenizer_intent
|
17 |
|
18 |
# Classifier Language
|
19 |
model_name = 'qanastek/51-languages-classifier'
|
20 |
tokenizer_langs = AutoTokenizer.from_pretrained(model_name)
|
21 |
model_langs = AutoModelForSequenceClassification.from_pretrained(model_name)
|
22 |
-
classifier_language = TextClassificationPipeline(model=model_langs, tokenizer=tokenizer_langs
|
23 |
|
24 |
# NER Extractor
|
25 |
model_name = 'qanastek/XLMRoberta-Alexa-Intents-NER-NLU'
|
26 |
tokenizer_ner = AutoTokenizer.from_pretrained(model_name)
|
27 |
model_ner = AutoModelForTokenClassification.from_pretrained(model_name)
|
28 |
-
predict_ner = TokenClassificationPipeline(model=model_ner, tokenizer=tokenizer_ner
|
29 |
|
30 |
def greet(name):
|
31 |
return "Hello " + name + "!!"
|
|
|
13 |
model_name = 'qanastek/XLMRoberta-Alexa-Intents-Classification'
|
14 |
tokenizer_intent = AutoTokenizer.from_pretrained(model_name)
|
15 |
model_intent = AutoModelForSequenceClassification.from_pretrained(model_name)
|
16 |
+
classifier_intent = TextClassificationPipeline(model=model_intent, tokenizer=tokenizer_intent)
|
17 |
|
18 |
# Classifier Language
|
19 |
model_name = 'qanastek/51-languages-classifier'
|
20 |
tokenizer_langs = AutoTokenizer.from_pretrained(model_name)
|
21 |
model_langs = AutoModelForSequenceClassification.from_pretrained(model_name)
|
22 |
+
classifier_language = TextClassificationPipeline(model=model_langs, tokenizer=tokenizer_langs)
|
23 |
|
24 |
# NER Extractor
|
25 |
model_name = 'qanastek/XLMRoberta-Alexa-Intents-NER-NLU'
|
26 |
tokenizer_ner = AutoTokenizer.from_pretrained(model_name)
|
27 |
model_ner = AutoModelForTokenClassification.from_pretrained(model_name)
|
28 |
+
predict_ner = TokenClassificationPipeline(model=model_ner, tokenizer=tokenizer_ner)
|
29 |
|
30 |
def greet(name):
|
31 |
return "Hello " + name + "!!"
|