aibmedia commited on
Commit
f2b36f2
·
verified ·
1 Parent(s): 8aae6f4

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +55 -74
main.py CHANGED
@@ -2,6 +2,17 @@ import os
2
  from flask import Flask
3
  import threading
4
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2"
7
  bearer = "Bearer " + os.getenv('TOKEN')
@@ -14,88 +25,58 @@ app = Flask(__name__)
14
 
15
  @app.route('/app')
16
  def server_app():
17
- t1 = threading.Thread(target=threadserver)
18
- print('treading')
19
- # os.system('./mxbai-embed-large-v1-f16.llamafile --server --nobrowser')
20
- t1.start()
21
- return 't1.start()'
22
 
23
  @app.route('/')
24
- def server_home():
25
- # t1 = threading.Thread(target=threadserver).start()
26
- # os.system(' ./mxbai-embed-large-v1-f16.llamafile --server --nobrowser &')
27
- return str(headers)
28
- # import asyncio
29
-
30
- # async def nested():
31
- # return 42
32
-
33
- # async def main():
34
- # # Nothing happens if we just call "nested()".
35
- # # A coroutine object is created but not awaited,
36
- # # so it *won't run at all*.
37
- # nested() # will raise a "RuntimeWarning".
38
-
39
- # # Let's do it differently now and await it:
40
- # print(await nested()) # will print "42".
41
-
42
- # asyncio.run(main())
43
-
44
- if __name__=='__main__':
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  app.run(debug=True)
46
 
47
-
48
  def threadserver():
49
  print('hi')
50
  os.system(' ./mxbai-embed-large-v1-f16.llamafile --server --nobrowser')
51
-
52
-
53
- # import requests
54
- # import os
55
- # import asyncio
56
-
57
- # # from langchain_core.tools import Tool
58
- # # from langchain_google_community import GoogleSearchAPIWrapper
59
-
60
- # from flask import Flask
61
-
62
-
63
- # API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2"
64
- # bearer = "Bearer " + os.getenv('TOKEN')
65
- # headers = {"Authorization": bearer }
66
- # print("headers")
67
- # print(headers)
68
-
69
- # app = Flask(__name__)
70
-
71
-
72
- # async def command_similarity():
73
- # payload = {"inputs": {"source_sentence": "That is a happy person","sentences": ["That is a happy dog","That is a very happy person","Today is a sunny day"]},}
74
- # return str( requests.post(API_URL, headers=headers, json=payload) )
75
-
76
- # async def asynm1():
77
- # return await command_similarity()
78
-
79
- # @app.route('/app')
80
- # def server_home():
81
- # asyncio.run(asynm1())
82
- # print("command run")
83
- # return asyncio.run(asynm1())
84
-
85
-
86
- # import asyncio
87
 
88
- # async def nested():
89
- # return 42
90
 
91
- # async def main():
92
- # # Nothing happens if we just call "nested()".
93
- # # A coroutine object is created but not awaited,
94
- # # so it *won't run at all*.
95
- # nested() # will raise a "RuntimeWarning".
96
 
97
- # # Let's do it differently now and await it:
98
- # print(await nested()) # will print "42".
 
 
99
 
100
- # asyncio.run(main())
101
-
 
2
  from flask import Flask
3
  import threading
4
 
5
+ from openai import OpenAI
6
+
7
+ app = Flask(__name__)
8
+ # client = OpenAI(
9
+ # # This base_url points to the local Llamafile server running on port 8080
10
+ # base_url="http://127.0.0.1:8080/v1",
11
+ # api_key="sk-no-key-required"
12
+ # )
13
+
14
+
15
+
16
 
17
  API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2"
18
  bearer = "Bearer " + os.getenv('TOKEN')
 
25
 
26
  @app.route('/app')
27
  def server_app():
28
+ llamafile = threading.Thread(target=threadserver)
29
+ print('This /app will start the llamafile server on thread')
30
+ llamafile.start()
31
+ return 'llamafile.start()'
 
32
 
33
  @app.route('/')
34
+ async def server_home():
35
+
36
+ output = await query({
37
+ "inputs": {
38
+ "source_sentence": "That is a happy person",
39
+ "sentences": [
40
+ "That is a happy dog",
41
+ "That is a very happy person",
42
+ "Today is a sunny day"
43
+ ]
44
+ },
45
+ })
46
+
47
+ return str(output)
48
+
49
+ # @app.route('/chat', methods=['POST'])
50
+ # def chat():
51
+ # try:
52
+ # user_message = request.json['message']
53
+
54
+ # completion = client.chat.completions.create(
55
+ # model="LLaMA_CPP",
56
+ # messages=[
57
+ # {"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."},
58
+ # {"role": "user", "content": user_message}
59
+ # ]
60
+ # )
61
+
62
+ # ai_response = completion.choices[0].message.content
63
+ # ai_response = ai_response.replace('</s>', '').strip()
64
+ # return jsonify({'response': ai_response})
65
+ # except Exception as e:
66
+ # print(f"Error: {str(e)}")
67
+ # return jsonify({'response': f"Sorry, there was an error processing your request: {str(e)}"}), 500
68
+
69
+ if __name__ == '__main__':
70
  app.run(debug=True)
71
 
 
72
  def threadserver():
73
  print('hi')
74
  os.system(' ./mxbai-embed-large-v1-f16.llamafile --server --nobrowser')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
 
 
76
 
 
 
 
 
 
77
 
78
+ async def query(data):
79
+ response = requests.post(API_URL, headers=headers, json=data)
80
+ return response.json()
81
+
82