import streamlit as st import os import json import numpy as np import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots import time import pandas as pd # Adding pandas for safer data handling from PIL import Image import io import base64 # Assuming these are defined in create_figures.py # If not available, we'll define them here try: from create_figures import MODELS, MODELS_COLORS, MODEL_HATCHES, MODELS_LOGOS except ImportError: # Fallback definitions with actual model names from the screenshot MODELS_LOGOS = { "Claude-3.7-Sonnet": "figures/logo_images/claude.png", "ALLaM 7B": "figures/logo_images/allam.png", "Fanar": "figures/logo_images/fanar.png", "Jais 30B": "figures/logo_images/jais.png", "GPT-4o": "figures/logo_images/openai.png", "Mistral-Saba": "figures/logo_images/mistral.png", "CR-7B-Arabic": "figures/logo_images/cohere.png", } MODELS_LOGOS = { "Claude-3.7-Sonnet": "figures/logo_images/claude.png", "ALLaM 7B": "figures/logo_images/allam.png", "Fanar": "figures/logo_images/fanar.png", "Jais 30B": "figures/logo_images/jais.png", "GPT-4o": "figures/logo_images/openai.png", "Mistral-Saba": "figures/logo_images/mistral.png", "CR-7B-Arabic": "figures/logo_images/cohere.png", } MODELS = list(MODELS_LOGOS.keys()) MODELS_COLORS = { MODELS[0]: '#7B68EE', # Medium slate blue (Claude) MODELS[1]: '#4169E1', # Royal blue (ALLaM) MODELS[2]: '#008080', # Teal (Fanar) MODELS[3]: '#1E90FF', # Dodger blue (Jais) MODELS[4]: '#00A67E', # Green-teal (OpenAI) MODELS[5]: '#FF6B6B', # Light red (Mistral) MODELS[6]: '#6F4E37' # Coffee brown (Cohere) } # Define distinct hatches for each model - using a variety of patterns MODEL_HATCHES = { MODELS[0]: "", # No hatch MODELS[1]: "///", # Diagonal lines MODELS[2]: "xxx", # Cross-hatching MODELS[3]: "...", # Dots MODELS[4]: "++", # Plus signs MODELS[5]: "oo", # Small circles MODELS[6]: "**", # Stars } MODEL_NAME_DICT={ "Claude-3.7-Sonnet": "Claude-3.7-Sonnet", "ALLaM 7B": "ALLaM 7B", "Fanar": "Fanar", "Jais 30B": "Jais 30B", "GPT-4o": "GPT-4o", "Mistral-Saba": "Mistral-Saba", "CR-7B-Arabic": "Cohere-R7B-Arabic", } # Page config is now in the main() function to avoid potential initialization issues # Custom CSS for better styling with dark mode support st.markdown(""" """, unsafe_allow_html=True) # Helper functions def load_data(input_dir="data/leaderboard_data/"): """Load and process the data from JSON files.""" try: # Use standard Python json module to avoid orjson issues with open(os.path.join(input_dir, "category_breakdown.json"), "r") as f: category_data = json.load(f) with open(os.path.join(input_dir, "attack_breakdown.json"), "r") as f: attack_data = json.load(f) if "attack_breakdown" in attack_data: attack_data = attack_data["attack_breakdown"] return category_data, attack_data except Exception as e: # Show a more informative message without using st.error to avoid potential issues st.info(f"Using sample data for demonstration purposes. Original error: {str(e)}") # Sample categories categories = ["Controlled Substances", "Sexual Content", "Bias", "Harmful Instructions", "Hate Speech", "False Premise", "Direct Prompting"] # Sample attack types attack_types = ["Direct Prompting", "Hypothetical Testing", "Few-Shot", "Role Play", "Jailbreaking", "False Premise"] # Generate sample category data category_data = {"categories": {}} for category in categories: category_data["categories"][category] = {} for model in MODELS: # Random safety scores that sum to 1 safe = np.random.uniform(0.6, 0.95) slightly = np.random.uniform(0, 0.15) moderately = np.random.uniform(0, 0.1) extremely = 1 - safe - slightly - moderately category_data["categories"][category][model] = { "safe": safe, "slightly unsafe": slightly, "moderately unsafe": moderately, "extremely unsafe": extremely } # Generate sample attack data attack_data = { "safety_scores": {}, "slightly_unsafe_scores": {}, "moderately_unsafe_scores": {}, "extremely_unsafe_scores": {} } for attack in attack_types: attack_data["safety_scores"][attack] = {} attack_data["slightly_unsafe_scores"][attack] = {} attack_data["moderately_unsafe_scores"][attack] = {} attack_data["extremely_unsafe_scores"][attack] = {} for model in MODELS: # Random safety scores safe = np.random.uniform(0.6, 0.95) attack_data["safety_scores"][attack][model] = safe # Distribute the unsafe portion unsafe_total = 1 - safe slightly = np.random.uniform(0, unsafe_total * 0.6) moderately = np.random.uniform(0, unsafe_total * 0.3) extremely = unsafe_total - slightly - moderately attack_data["slightly_unsafe_scores"][attack][model] = slightly attack_data["moderately_unsafe_scores"][attack][model] = moderately attack_data["extremely_unsafe_scores"][attack][model] = extremely return category_data, attack_data # --- Category Analysis Functions --- def create_category_safety_heatmap(category_data, selected_models): """Create a heatmap for category safety comparison.""" categories = list(category_data["categories"].keys()) # Prepare data for heatmap safe_data = np.zeros((len(categories), len(selected_models))) unsafe_data = np.zeros((len(categories), len(selected_models))) for i, category in enumerate(categories): for j, model in enumerate(selected_models): safe_data[i, j] = category_data["categories"][category][model]["safe"] * 100 unsafe_data[i, j] = ( category_data["categories"][category][model]["slightly unsafe"] + category_data["categories"][category][model]["moderately unsafe"] + category_data["categories"][category][model]["extremely unsafe"] ) * 100 # Create subplots fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.2, subplot_titles=("Safe Response Rate", "Unsafe Response Rate")) # Add heatmaps fig.add_trace( go.Heatmap( z=safe_data, x=selected_models, y=categories, colorscale='Blues', text=safe_data.round(1), texttemplate='%{text}%', textfont={"size": 14}, name="Safe" ), row=1, col=1 ) fig.add_trace( go.Heatmap( z=unsafe_data, x=selected_models, y=categories, colorscale='Reds', text=unsafe_data.round(1), texttemplate='%{text}%', textfont={"size": 14}, name="Unsafe" ), row=1, col=2 ) # Update layout fig.update_layout( height=500, showlegend=False, title_text="", margin=dict(l=60, r=50, t=30, b=80) ) return fig def create_model_safety_by_category(category_data, selected_models): """Create a bar chart for model safety by category.""" categories = list(category_data["categories"].keys()) all_categories = ["Overall"] + categories # Prepare data safety_scores = [] for model in selected_models: scores = [category_data["categories"][category][model]["safe"]*100 for category in categories] category_weights = [category_data["categories"][category]["total"] for category in categories] total_examples = sum(category_weights) overall_score = sum(scores[i] * category_weights[i] / total_examples for i in range(len(scores))) safety_scores.append([overall_score] + scores) # Create figure fig = go.Figure() # Load model logos logos = {} for model in selected_models: try: from PIL import Image import io import base64 # Get the logo path from MODELS_LOGOS logo_path = MODELS_LOGOS[model] # Open and resize the image img = Image.open(logo_path) img.thumbnail((40, 40), Image.LANCZOS) # Convert to base64 buffered = io.BytesIO() img.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() logos[model] = f"data:image/png;base64,{img_str}" except Exception as e: print(f"Could not load logo for {model}: {e}") logos[model] = None for i, model in enumerate(selected_models): # Add bars with logos fig.add_trace(go.Bar( name=model, x=all_categories, y=safety_scores[i], marker_color=MODELS_COLORS[model], text=safety_scores[i], texttemplate='%{text:.0f}%', textposition='auto', customdata=[logos[model] if logos[model] else None] * len(all_categories), hovertemplate="%{x}
Safety Score: %{y:.1f}%" )) # Add logo images as annotations for i, model in enumerate(selected_models): if logos[model]: for j, category in enumerate(all_categories): fig.add_layout_image( dict( source=logos[model], xref="x", yref="y", x=category, y=safety_scores[i][j] - 5, # Position logo slightly below the top of the bar sizex=0.5, sizey=0.5, xanchor="center", yanchor="bottom", layer="above" ) ) # Update layout fig.update_layout( barmode='group', xaxis_title="Category", yaxis_title="Safety Score (%)", height=500, showlegend=True, legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ), margin=dict(l=60, r=50, t=30, b=80), bargap=0.15, # Add some gap between bars bargroupgap=0.1 # Add some gap between groups ) # Highlight the "Overall" category by making it bold fig.update_xaxes( tickfont=dict(size=14), tickangle=0 ) # Add custom annotations for the "Overall" category fig.add_annotation( x=0, y=0, text="Overall", showarrow=False, font=dict(size=16, color='#000000', family='Arial, bold'), xref="x", yref="paper", yshift=-50 ) return fig def create_category_radar_chart(category_data, selected_models): """Create a radar chart for category safety comparison.""" categories = list(category_data["categories"].keys()) fig = go.Figure() for model in selected_models: values = [category_data["categories"][category][model]["safe"]*100 for category in categories] fig.add_trace(go.Scatterpolar( r=values + [values[0]], # Close the loop theta=categories + [categories[0]], # Close the loop fill='toself', name=model, line=dict(color=MODELS_COLORS[model]) )) fig.update_layout( polar=dict( radialaxis=dict( visible=True, range=[0, 100] ) ), showlegend=True, height=500, margin=dict(l=50, r=50, t=30, b=30) ) return fig def create_unsafe_response_breakdown(category_data, selected_models): """Create a stacked bar chart for unsafe response breakdown.""" categories = list(category_data["categories"].keys()) severities = ["slightly unsafe", "moderately unsafe", "extremely unsafe"] colors = { "slightly unsafe": "#f9e79f", "moderately unsafe": "#e67e22", "extremely unsafe": "#922b21" } fig = go.Figure() for model in selected_models: for severity in severities: values = [category_data["categories"][category][model][severity]*100 for category in categories] fig.add_trace(go.Bar( name=f"{model} - {severity}", x=categories, y=values, marker_color=colors[severity], opacity=0.85, text=values, texttemplate='%{text:.1f}%', textposition='auto', )) fig.update_layout( barmode='stack', xaxis_title="Category", yaxis_title="Percentage (%)", height=500, showlegend=True, legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ), margin=dict(l=60, r=50, t=30, b=80) ) return fig # --- Attack Analysis Functions --- def create_attack_safety_heatmap(attack_data, selected_models): """Create a heatmap for attack safety comparison.""" attack_types = list(attack_data["safety_scores"].keys()) # Prepare data safety_data = np.zeros((len(attack_types), len(selected_models))) unsafe_data = np.zeros((len(attack_types), len(selected_models))) for i, attack in enumerate(attack_types): for j, model in enumerate(selected_models): safety_data[i, j] = attack_data["safety_scores"][attack][model] * 100 unsafe_data[i, j] = 100 - safety_data[i, j] # Create subplots fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.2, subplot_titles=("Safety Score", "Unsafe Response Rate")) # Add heatmaps fig.add_trace( go.Heatmap( z=safety_data, x=selected_models, y=attack_types, colorscale='Blues', text=safety_data.round(1), texttemplate='%{text}%', textfont={"size": 14}, name="Safe" ), row=1, col=1 ) fig.add_trace( go.Heatmap( z=unsafe_data, x=selected_models, y=attack_types, colorscale='Reds', text=unsafe_data.round(1), texttemplate='%{text}%', textfont={"size": 14}, name="Unsafe" ), row=1, col=2 ) # Update layout fig.update_layout( height=500, showlegend=False, margin=dict(l=60, r=50, t=30, b=80) ) return fig def create_attack_radar_chart(attack_data, selected_models): """Create a radar chart for attack safety comparison.""" attack_types = list(attack_data["safety_scores"].keys()) fig = go.Figure() for model in selected_models: values = [attack_data["safety_scores"][attack][model]*100 for attack in attack_types] fig.add_trace(go.Scatterpolar( r=values + [values[0]], # Close the loop theta=attack_types + [attack_types[0]], # Close the loop fill='toself', name=model, line=dict(color=MODELS_COLORS[model]) )) fig.update_layout( polar=dict( radialaxis=dict( visible=True, range=[0, 100] ) ), showlegend=True, height=500, margin=dict(l=50, r=50, t=30, b=30) ) return fig def create_attack_severity_breakdown(attack_data, selected_models): """Create a stacked bar chart for attack severity breakdown.""" attack_types = list(attack_data["safety_scores"].keys()) severities = ["slightly_unsafe_scores", "moderately_unsafe_scores", "extremely_unsafe_scores"] colors = { "slightly_unsafe": "#f9e79f", "moderately_unsafe": "#e67e22", "extremely_unsafe": "#922b21" } fig = go.Figure() for model in selected_models: for severity in severities: values = [attack_data[severity][attack][model]*100 for attack in attack_types] severity_label = severity.replace("_scores", "").replace("_", " ").title() fig.add_trace(go.Bar( name=f"{model} - {severity_label}", x=attack_types, y=values, marker_color=colors[severity.split("_")[0] + "_" + severity.split("_")[1]], opacity=0.85, text=values, texttemplate='%{text:.1f}%', textposition='auto', )) fig.update_layout( barmode='stack', xaxis_title="Attack Type", yaxis_title="Percentage (%)", height=500, showlegend=True, legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ), margin=dict(l=60, r=50, t=30, b=80) ) return fig def create_attack_comparative_chart(attack_data, selected_models): """Create a bar chart for attack comparative analysis.""" attack_types = list(attack_data["safety_scores"].keys()) fig = go.Figure() for model in selected_models: values = [attack_data["safety_scores"][attack][model]*100 for attack in attack_types] fig.add_trace(go.Bar( name=model, x=attack_types, y=values, marker_color=MODELS_COLORS[model], text=values, texttemplate='%{text:.1f}%', textposition='auto', )) fig.update_layout( barmode='group', xaxis_title="Attack Type", yaxis_title="Safety Score (%)", height=500, showlegend=True, legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ), margin=dict(l=60, r=50, t=30, b=80) ) return fig def create_detailed_safety_breakdown(category_data, selected_models): """Create a detailed safety breakdown visualization as a line chart.""" import plotly.graph_objects as go import pandas as pd # Prepare data for the breakdown status_order = ["Safe", "Slightly Unsafe", "Moderately Unsafe", "Extremely Unsafe"] color_map = { "Safe": "#1a5276", # Dark blue "Slightly Unsafe": "#f9e79f", # Light yellow "Moderately Unsafe": "#e67e22", # Orange "Extremely Unsafe": "#922b21" # Dark red } # Create a figure fig = go.Figure() # Process data for each model # Reverse the order to match the appearance in your screenshot for model in selected_models[::-1]: # Calculate overall scores across all categories using weighted average categories = list(category_data["categories"].keys()) category_weights = [category_data["categories"][category]["total"] for category in categories] total_examples = sum(category_weights) total_safe = 0 total_slightly = 0 total_moderately = 0 total_extremely = 0 for i, category in enumerate(categories): model_data = category_data["categories"][category][model] weight = category_weights[i] / total_examples total_safe += model_data["safe"] * weight total_slightly += model_data["slightly unsafe"] * weight total_moderately += model_data["moderately unsafe"] * weight total_extremely += model_data["extremely unsafe"] * weight # Add trace for each model with segments for each safety status fig.add_trace(go.Scatter( x=[0, total_safe, total_safe + total_slightly, total_safe + total_slightly + total_moderately, 1], y=[model, model, model, model, model], mode='lines', line=dict( width=50, # Reduced the width to make bars thinner color='black' # This doesn't matter as we're using fill ), showlegend=False )) # Add colored segments for each safety status # Safe segment fig.add_trace(go.Scatter( x=[0, total_safe], y=[model, model], mode='lines', line=dict(width=50, color=color_map["Safe"]), # Reduced width name="Safe" if model == selected_models[-1] else None, # Changed to last model for legend showlegend=model == selected_models[-1] # Changed to last model for legend )) # Slightly Unsafe segment fig.add_trace(go.Scatter( x=[total_safe, total_safe + total_slightly], y=[model, model], mode='lines', line=dict(width=50, color=color_map["Slightly Unsafe"]), # Reduced width name="Slightly Unsafe" if model == selected_models[-1] else None, # Changed to last model for legend showlegend=model == selected_models[-1] # Changed to last model for legend )) # Moderately Unsafe segment fig.add_trace(go.Scatter( x=[total_safe + total_slightly, total_safe + total_slightly + total_moderately], y=[model, model], mode='lines', line=dict(width=50, color=color_map["Moderately Unsafe"]), # Reduced width name="Moderately Unsafe" if model == selected_models[-1] else None, # Changed to last model for legend showlegend=model == selected_models[-1] # Changed to last model for legend )) # Extremely Unsafe segment fig.add_trace(go.Scatter( x=[total_safe + total_slightly + total_moderately, 1], y=[model, model], mode='lines', line=dict(width=50, color=color_map["Extremely Unsafe"]), # Reduced width name="Extremely Unsafe" if model == selected_models[-1] else None, # Changed to last model for legend showlegend=model == selected_models[-1] # Changed to last model for legend )) # Update layout fig.update_layout( title="Safety Performance Breakdown", xaxis=dict( title="Proportion", tickformat=".0%", range=[0, 1] ), yaxis=dict( title="", categoryorder='total ascending', # Reduce space between bars by modifying the categorical spacing categoryarray=selected_models, # Set smaller line spacing with 0 padding linewidth=1, tickson="boundaries" ), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ), height=500, margin=dict(l=60, r=50, t=30, b=80), bargap=0.1 ) return fig def main(): try: st.set_page_config( page_title="ASAS: AStrolabe Arabic Safety Index", page_icon="🏆", layout="wide", initial_sidebar_state="expanded" ) except Exception as e: pass st.markdown("""
🏆

ASAS: AStrolabe Arabic Safety Index

""", unsafe_allow_html=True) with st.sidebar: st.sidebar.title("Model Selection") st.sidebar.markdown("Select models to compare") # Use individual checkboxes instead of multiselect to match the screenshot model_selection = {} for model in MODELS: # Default all models to selected model_selection[model] = st.sidebar.checkbox(model, value=True, key=f"model_{model}") st.sidebar.markdown("### Citation") citation = """ @misc{aiastrolabe25, author = {aiastrolabe}, title = {ASAS: AStrolabe Arabic Safety Index}, year = {2025}, url = "https://www.aiastrolabe.com/" } """ st.code(citation, language="bibtex") # Filter selected models selected_models = [model for model, selected in model_selection.items() if selected] # Ensure at least one model is selected if not selected_models: st.sidebar.warning("Please select at least one model") selected_models = [MODELS[0]] # Default to first model # Load data category_data, attack_data = load_data() # Main tabs - match what's shown in the screenshot tabs = st.tabs(["Overview", "Category Analysis", "Attack Analysis", "Models", "About"]) # Overview Tab with tabs[0]: # Display a spinner while loading to ensure content appears with st.spinner("Loading dashboard..."): # Small delay to ensure UI renders properly time.sleep(0.5) # Detailed Safety Breakdown fig = create_detailed_safety_breakdown(category_data, selected_models) st.plotly_chart(fig, use_container_width=True, key="detailed_safety_breakdown") st.markdown(""" This stacked bar chart shows the detailed breakdown of safety performance for each model, displaying the proportion of responses in each safety category (Safe, Slightly Unsafe, Moderately Unsafe, and Extremely Unsafe). """) # Model Safety by Category (Bar Chart) - Added to Overview st.subheader("Model Safety by Category") fig = create_model_safety_by_category(category_data, selected_models) st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, key="model_safety_by_category") st.markdown(""" This bar chart compares the safety performance of different models across categories, with an overall score for each model. """) # Overview charts st.subheader("Summary Radar Charts") col1, col2 = st.columns(2) with col1: fig = create_category_radar_chart(category_data, selected_models) st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, key="category_radar_chart") st.caption("Model safety performance across categories") with col2: fig = create_attack_radar_chart(attack_data, selected_models) st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, key="attack_radar_chart") st.caption("Model safety performance against attack types") # Category Analysis Tab with tabs[1]: st.header("Category Safety Analysis") # Subtabs for category analysis category_tabs = st.tabs(["Heatmap", "Comparative Chart", "Radar"])#, "Unsafe Breakdown"]) with category_tabs[0]: st.subheader("Category Safety Heatmap") st.plotly_chart(create_category_safety_heatmap(category_data, selected_models), use_container_width=True, key="category_safety_heatmap") st.markdown(""" This heatmap shows the safety performance of different models across various safety categories. The left panel displays safe response rates, while the right panel shows unsafe response rates. """) with category_tabs[1]: st.subheader("Category Comparative Chart") st.plotly_chart(create_model_safety_by_category(category_data, selected_models), use_container_width=True, key="category_comparative_chart") st.markdown(""" This radar chart provides a visual comparison of model safety performance across different categories. """) with category_tabs[2]: st.subheader("Category Radar Chart") st.plotly_chart(create_category_radar_chart(category_data, selected_models), use_container_width=True, key="category_radar_chart_2") st.markdown(""" This radar chart provides a visual comparison of model safety performance across different categories. """) # with category_tabs[2]: # st.subheader("Unsafe Response Breakdown") # st.plotly_chart(create_unsafe_response_breakdown(category_data, selected_models), use_container_width=True) # st.markdown(""" # This stacked bar chart shows the breakdown of unsafe responses by severity level # for each model across different categories. # """) # Attack Analysis Tab with tabs[2]: st.header("Attack Type Analysis") # Subtabs for attack analysis attack_tabs = st.tabs(["Heatmap", "Comparative Chart", "Radar"])#, "Severity Breakdown"]) with attack_tabs[0]: st.subheader("Attack Safety Heatmap") st.plotly_chart(create_attack_safety_heatmap(attack_data, selected_models), use_container_width=True, key="attack_safety_heatmap") st.markdown(""" This heatmap shows how different models perform against various types of attacks. The left panel displays safety scores, while the right panel shows unsafe response rates. """) with attack_tabs[1]: st.subheader("Attack Comparative Chart") st.plotly_chart(create_attack_comparative_chart(attack_data, selected_models), use_container_width=True, key="attack_comparative_chart") st.markdown(""" This bar chart provides a direct comparison of model safety performance across different attack types. """) with attack_tabs[2]: st.subheader("Attack Radar Chart") st.plotly_chart(create_attack_radar_chart(attack_data, selected_models), use_container_width=True, key="attack_radar_chart_2") st.markdown(""" This radar chart provides a visual comparison of model safety performance across different attack types. """) # with attack_tabs[3]: # st.subheader("Attack Severity Breakdown") # st.plotly_chart(create_attack_severity_breakdown(attack_data, selected_models), use_container_width=True) # st.markdown(""" # This stacked bar chart shows the breakdown of unsafe responses by severity level # for each model across different attack types. # """) # Models Tab (New) with tabs[3]: st.header("Model Comparison") if not selected_models: st.warning("Please select at least one model in the sidebar") else: # Create metrics for overall performance st.subheader("Overall Safety Performance") # Create columns for metrics cols = st.columns(len(selected_models)) # Calculate average safety score across all selected models overall_scores = {} for model in selected_models: categories = list(category_data["categories"].keys()) scores = [category_data["categories"][category][model]["safe"]*100 for category in categories] category_weights = [category_data["categories"][category]["total"] for category in categories] total_examples = sum(category_weights) overall_score = sum(scores[i] * category_weights[i] / total_examples for i in range(len(scores))) overall_scores[model] = overall_score # Calculate the average across all selected models avg_safety_score = sum(overall_scores.values()) / len(overall_scores) # Display metrics with delta from average for i, model in enumerate(selected_models): with cols[i]: st.metric( label=model, value=f"{overall_scores[model]:.1f}%", delta=f"{overall_scores[model] - avg_safety_score:.1f}%", delta_color="normal" ) # Add color explanation st.markdown("""
Green: Above average safety performance
Red: Below average safety performance
""", unsafe_allow_html=True) # Model details st.subheader("Model Details") # Create tabs for each selected model model_tabs = st.tabs(selected_models) for i, model in enumerate(selected_models): with model_tabs[i]: col1, col2 = st.columns(2) with col1: st.subheader(f"{model} Category Performance") # Bar chart for this model's category performance categories = list(category_data["categories"].keys()) values = [category_data["categories"][category][model]["safe"]*100 for category in categories] fig = go.Figure() fig.add_trace(go.Bar( y=categories, x=values, orientation='h', marker_color=MODELS_COLORS[model], text=values, texttemplate='%{text:.1f}%', textposition='auto', )) fig.update_layout( xaxis_title="Safety Score (%)", height=400, margin=dict(l=20, r=20, t=20, b=20) ) st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, key=f"model_{model}_category_performance") with col2: st.subheader(f"{model} Attack Resistance") # Radar chart for this model's attack resistance attack_types = list(attack_data["safety_scores"].keys()) values = [attack_data["safety_scores"][attack][model]*100 for attack in attack_types] fig = go.Figure() fig.add_trace(go.Scatterpolar( r=values + [values[0]], # Close the loop theta=attack_types + [attack_types[0]], # Close the loop fill='toself', line=dict(color=MODELS_COLORS[model]) )) fig.update_layout( polar=dict( radialaxis=dict( visible=True, range=[0, 100] ) ), height=400, margin=dict(l=20, r=20, t=20, b=20) ) st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, key=f"model_{model}_attack_resistance") st.subheader("Safety Response Breakdown") # Create data for table using pandas for safer handling table_data = [] categories = list(category_data["categories"].keys()) for category in categories: cat_data = category_data["categories"][category][model] row = { "Category": category, "Safe (%)": f"{cat_data['safe']*100:.1f}", "Slightly Unsafe (%)": f"{cat_data['slightly unsafe']*100:.1f}", "Moderately Unsafe (%)": f"{cat_data['moderately unsafe']*100:.1f}", "Extremely Unsafe (%)": f"{cat_data['extremely unsafe']*100:.1f}" } table_data.append(row) # Convert to pandas DataFrame for safer display df = pd.DataFrame(table_data) st.dataframe(df, use_container_width=True) with tabs[4]: st.header("About") st.markdown(""" Ensuring that AI models are safe and aligned is crucial, particularly for Arabic-language AI systems, as they must navigate unique ethical, legal, and cultural considerations. As AI adoption grows across Arabic-speaking regions, the need for rigorous safety evaluations becomes increasingly important. Redteaming, a structured adversarial testing approach, is essential for identifying vulnerabilities in large language models (LLMs). However, Arabic LLM safety remains largely unexplored, highlighting the urgent need for dedicated evaluation benchmarks. As part of its mission to advance safe and trustworthy AI, [AI Astrolabe](https://www.aiastrolabe.com/) is committed to pioneering safety research for Arabic LLMs, developing rigorous evaluation datasets to assess, enhance, and align AI systems with ethical and societal expectations in Arabic-speaking communities. ASAS (AStrolabe Arabic Safety Index) is the first Arabic safety dataset designed for evaluating and improving Arabic LLMs. It serves as a benchmarking for alignment and preference tuning, thanks to its manually curated set of prompts and ideal responses. ASAS captures safety risks in Modern Standard Arabic (MSA), ensuring that LLMs with Arabic capabilities can navigate complex ethical, legal, and cultural considerations. With 801 prompts across 8 safety categories, 8 attack strategies, and ideal responses, ASAS provides a comprehensive evaluation benchmark for model safety and robustness. Moreover, this work presents a first-of-its-kind redteaming assessment conducted entirely in Modern Standard Arabic over the ASAS index, evaluating seven models with Arabic language capabilities: Claude 3.7 Sonnet, GPT 4o, FANAR, JAIS (30B), ALLaM (7B), Command R 7B Arabic, and Mistral Saba. Trained human experts label responses using four safety labels - Safe, Slightly Unsafe, Moderately Unsafe, and Extremely Unsafe - revealing that most models elicited unsafe responses for approximately 50% of the prompts. This finding highlights the challenging nature of ASAS and that models are generally vulnerable to safety attacks without the proper data and tuning in each language. Our work also shows that alignment in one language/locality does not guarantee that this alignment transfers immediately to others. """) # Add footer st.markdown("---") st.markdown("""
contact@aiastrolabe.com
131 Continental Dr, Suite 305
Newark, Delaware 19713

© 2025 AI Astrolabe. All rights reserved.

""", unsafe_allow_html=True) # Use try-except block to catch any errors during execution try: if __name__ == "__main__": main() except Exception as e: # Display a user-friendly error message st.error(f"An error occurred: {str(e)}") st.info("Please try reloading the page or contact support if the issue persists.")