File size: 43,791 Bytes
03c4874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b75ed
03c4874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b7f10
 
 
03c4874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b75ed
03c4874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07f4a1d
 
 
 
03c4874
 
 
 
 
 
 
 
 
07f4a1d
 
 
 
 
 
758f186
 
 
 
 
03c4874
 
 
 
 
758f186
03c4874
758f186
 
 
 
 
07f4a1d
 
 
758f186
07f4a1d
 
 
 
 
 
 
 
 
 
 
 
758f186
07f4a1d
 
 
 
 
 
 
 
 
758f186
07f4a1d
 
 
 
 
 
 
 
 
758f186
07f4a1d
 
 
 
 
 
 
 
 
758f186
07f4a1d
 
 
 
 
 
03c4874
 
 
07f4a1d
03c4874
07f4a1d
03c4874
 
 
 
07f4a1d
 
 
 
 
 
 
03c4874
 
 
 
 
 
 
 
 
07f4a1d
 
03c4874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07f4a1d
03c4874
 
 
 
 
 
 
 
 
07f4a1d
03c4874
 
 
 
 
 
 
 
 
 
 
07f4a1d
03c4874
 
 
 
07f4a1d
03c4874
 
 
 
 
 
 
 
 
 
 
07f4a1d
03c4874
 
 
 
 
 
36b75ed
03c4874
 
 
 
 
 
07f4a1d
03c4874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07f4a1d
03c4874
 
 
 
 
 
 
07f4a1d
03c4874
 
 
 
 
 
 
07f4a1d
03c4874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1713ff5
 
 
03c4874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07f4a1d
03c4874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07f4a1d
03c4874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
import streamlit as st
import os
import json
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import time
import pandas as pd  # Adding pandas for safer data handling
from PIL import Image
import io
import base64

# Assuming these are defined in create_figures.py
# If not available, we'll define them here
try:
    from create_figures import MODELS, MODELS_COLORS, MODEL_HATCHES, MODELS_LOGOS
except ImportError:
    # Fallback definitions with actual model names from the screenshot
    MODELS_LOGOS = {
        "Claude-3.7-Sonnet": "figures/logo_images/claude.png",
        "ALLaM 7B": "figures/logo_images/allam.png",
        "Fanar": "figures/logo_images/fanar.png",
        "Jais 30B": "figures/logo_images/jais.png",
        "GPT-4o": "figures/logo_images/openai.png",
        "Mistral-Saba": "figures/logo_images/mistral.png",
        "CR-7B-Arabic": "figures/logo_images/cohere.png",
    }
    MODELS_LOGOS = {
        "Claude-3.7-Sonnet": "figures/logo_images/claude.png",
        "ALLaM 7B": "figures/logo_images/allam.png",
        "Fanar": "figures/logo_images/fanar.png",
        "Jais 30B": "figures/logo_images/jais.png",
        "GPT-4o": "figures/logo_images/openai.png",
        "Mistral-Saba": "figures/logo_images/mistral.png",
        "CR-7B-Arabic": "figures/logo_images/cohere.png",
    }

    MODELS = list(MODELS_LOGOS.keys())
    MODELS_COLORS = {
        MODELS[0]: '#7B68EE',       # Medium slate blue (Claude)
        MODELS[1]: '#4169E1',       # Royal blue (ALLaM)
        MODELS[2]: '#008080',       # Teal (Fanar)
        MODELS[3]: '#1E90FF',       # Dodger blue (Jais)
        MODELS[4]: '#00A67E',       # Green-teal (OpenAI)
        MODELS[5]: '#FF6B6B',       # Light red (Mistral)
        MODELS[6]: '#6F4E37'        # Coffee brown (Cohere)
    }

    # Define distinct hatches for each model - using a variety of patterns
    MODEL_HATCHES = {
        MODELS[0]: "",           # No hatch
        MODELS[1]: "///",        # Diagonal lines
        MODELS[2]: "xxx",        # Cross-hatching
        MODELS[3]: "...",        # Dots
        MODELS[4]: "++",         # Plus signs
        MODELS[5]: "oo",         # Small circles
        MODELS[6]: "**",         # Stars
    }

MODEL_NAME_DICT={
    "Claude-3.7-Sonnet": "Claude-3.7-Sonnet",
    "ALLaM 7B": "ALLaM 7B",
    "Fanar": "Fanar",
    "Jais 30B": "Jais 30B",
    "GPT-4o": "GPT-4o",
    "Mistral-Saba": "Mistral-Saba",
    "CR-7B-Arabic": "Cohere-R7B-Arabic",
}
# Page config is now in the main() function to avoid potential initialization issues

# Custom CSS for better styling with dark mode support
st.markdown("""
    <style>
    .stTabs [data-baseweb="tab-list"] {
        gap: 8px;
    }
    .stTabs [data-baseweb="tab"] {
        height: 50px;
        white-space: pre-wrap;
        border-radius: 4px 4px 0px 0px;
        gap: 1px;
        padding-top: 10px;
        padding-bottom: 10px;
    }
    .stTabs [aria-selected="true"] {
        background-color: #4e8df5;
        color: white;
    }
    h1, h2, h3 {
        padding-top: 1rem;
        padding-bottom: 0.5rem;
    }
    .stMarkdown {
        padding: 0.5rem 0;
    }
    .block-container {
        max-width: 1200px;
        padding: 1rem 2rem !important;
    }
    .element-container {
        opacity: 1 !important;
    }
    div[data-testid="stVerticalBlock"] {
        opacity: 1 !important;
    }
    </style>
    """, unsafe_allow_html=True)

# Helper functions
def load_data(input_dir="data/leaderboard_data/"):
    """Load and process the data from JSON files."""
    try:
        # Use standard Python json module to avoid orjson issues
        with open(os.path.join(input_dir, "category_breakdown.json"), "r") as f:
            category_data = json.load(f)
        
        with open(os.path.join(input_dir, "attack_breakdown.json"), "r") as f:
            attack_data = json.load(f)
            if "attack_breakdown" in attack_data:
                attack_data = attack_data["attack_breakdown"]
        
        return category_data, attack_data
    except Exception as e:
        # Show a more informative message without using st.error to avoid potential issues
        st.info(f"Using sample data for demonstration purposes. Original error: {str(e)}")
        
        # Sample categories
        categories = ["Controlled Substances", "Sexual Content", "Bias", "Harmful Instructions", 
                     "Hate Speech", "False Premise", "Direct Prompting"]
        
        # Sample attack types
        attack_types = ["Direct Prompting", "Hypothetical Testing", "Few-Shot", "Role Play", 
                       "Jailbreaking", "False Premise"]
        
        # Generate sample category data
        category_data = {"categories": {}}
        for category in categories:
            category_data["categories"][category] = {}
            for model in MODELS:
                # Random safety scores that sum to 1
                safe = np.random.uniform(0.6, 0.95)
                slightly = np.random.uniform(0, 0.15)
                moderately = np.random.uniform(0, 0.1)
                extremely = 1 - safe - slightly - moderately
                
                category_data["categories"][category][model] = {
                    "safe": safe,
                    "slightly unsafe": slightly,
                    "moderately unsafe": moderately,
                    "extremely unsafe": extremely
                }
        
        # Generate sample attack data
        attack_data = {
            "safety_scores": {},
            "slightly_unsafe_scores": {},
            "moderately_unsafe_scores": {},
            "extremely_unsafe_scores": {}
        }
        
        for attack in attack_types:
            attack_data["safety_scores"][attack] = {}
            attack_data["slightly_unsafe_scores"][attack] = {}
            attack_data["moderately_unsafe_scores"][attack] = {}
            attack_data["extremely_unsafe_scores"][attack] = {}
            
            for model in MODELS:
                # Random safety scores
                safe = np.random.uniform(0.6, 0.95)
                attack_data["safety_scores"][attack][model] = safe
                
                # Distribute the unsafe portion
                unsafe_total = 1 - safe
                slightly = np.random.uniform(0, unsafe_total * 0.6)
                moderately = np.random.uniform(0, unsafe_total * 0.3)
                extremely = unsafe_total - slightly - moderately
                
                attack_data["slightly_unsafe_scores"][attack][model] = slightly
                attack_data["moderately_unsafe_scores"][attack][model] = moderately
                attack_data["extremely_unsafe_scores"][attack][model] = extremely
        
        return category_data, attack_data

# --- Category Analysis Functions ---
def create_category_safety_heatmap(category_data, selected_models):
    """Create a heatmap for category safety comparison."""
    categories = list(category_data["categories"].keys())
    
    # Prepare data for heatmap
    safe_data = np.zeros((len(categories), len(selected_models)))
    unsafe_data = np.zeros((len(categories), len(selected_models)))
    
    for i, category in enumerate(categories):
        for j, model in enumerate(selected_models):
            safe_data[i, j] = category_data["categories"][category][model]["safe"] * 100
            unsafe_data[i, j] = (
                category_data["categories"][category][model]["slightly unsafe"] +
                category_data["categories"][category][model]["moderately unsafe"] +
                category_data["categories"][category][model]["extremely unsafe"]
            ) * 100
    
    # Create subplots
    fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.2,
                       subplot_titles=("Safe Response Rate", "Unsafe Response Rate"))
    
    # Add heatmaps
    fig.add_trace(
        go.Heatmap(
            z=safe_data,
            x=selected_models,
            y=categories,
            colorscale='Blues',
            text=safe_data.round(1),
            texttemplate='%{text}%',
            textfont={"size": 14},
            name="Safe"
        ),
        row=1, col=1
    )
    
    fig.add_trace(
        go.Heatmap(
            z=unsafe_data,
            x=selected_models,
            y=categories,
            colorscale='Reds',
            text=unsafe_data.round(1),
            texttemplate='%{text}%',
            textfont={"size": 14},
            name="Unsafe"
        ),
        row=1, col=2
    )
    
    # Update layout
    fig.update_layout(
        height=500,
        showlegend=False,
        title_text="",
        margin=dict(l=60, r=50, t=30, b=80)
    )
    
    return fig

def create_model_safety_by_category(category_data, selected_models):
    """Create a bar chart for model safety by category."""
    categories = list(category_data["categories"].keys())
    all_categories = ["Overall"] + categories

    # Prepare data
    safety_scores = []
    for model in selected_models:
        scores = [category_data["categories"][category][model]["safe"]*100 for category in categories]
        category_weights = [category_data["categories"][category]["total"] for category in categories]
        total_examples = sum(category_weights)
        overall_score = sum(scores[i] * category_weights[i] / total_examples for i in range(len(scores)))
        safety_scores.append([overall_score] + scores)

    # Create figure
    fig = go.Figure()

    # Load model logos
    logos = {}
    for model in selected_models:
        try:
            from PIL import Image
            import io
            import base64

            # Get the logo path from MODELS_LOGOS
            logo_path = MODELS_LOGOS[model]

            # Open and resize the image
            img = Image.open(logo_path)
            img.thumbnail((40, 40), Image.LANCZOS)

            # Convert to base64
            buffered = io.BytesIO()
            img.save(buffered, format="PNG")
            img_str = base64.b64encode(buffered.getvalue()).decode()

            logos[model] = f"data:image/png;base64,{img_str}"
        except Exception as e:
            print(f"Could not load logo for {model}: {e}")
            logos[model] = None

    for i, model in enumerate(selected_models):
        # Add bars with logos
        fig.add_trace(go.Bar(
            name=model,
            x=all_categories,
            y=safety_scores[i],
            marker_color=MODELS_COLORS[model],
            text=safety_scores[i],
            texttemplate='%{text:.0f}%',
            textposition='auto',
            customdata=[logos[model] if logos[model] else None] * len(all_categories),
            hovertemplate="<b>%{x}</b><br>Safety Score: %{y:.1f}%<extra></extra>"
        ))

    # Add logo images as annotations
    for i, model in enumerate(selected_models):
        if logos[model]:
            for j, category in enumerate(all_categories):
                fig.add_layout_image(
                    dict(
                        source=logos[model],
                        xref="x",
                        yref="y",
                        x=category,
                        y=safety_scores[i][j] - 5,  # Position logo slightly below the top of the bar
                        sizex=0.5,
                        sizey=0.5,
                        xanchor="center",
                        yanchor="bottom",
                        layer="above"
                    )
                )

    # Update layout
    fig.update_layout(
        barmode='group',
        xaxis_title="Category",
        yaxis_title="Safety Score (%)",
        height=500,
        showlegend=True,
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=1.02,
            xanchor="right",
            x=1
        ),
        margin=dict(l=60, r=50, t=30, b=80),
        bargap=0.15,  # Add some gap between bars
        bargroupgap=0.1  # Add some gap between groups
    )

    # Highlight the "Overall" category by making it bold
    fig.update_xaxes(
        tickfont=dict(size=14),
        tickangle=0
    )

    # Add custom annotations for the "Overall" category
    fig.add_annotation(
        x=0,
        y=0,
        text="Overall",
        showarrow=False,
        font=dict(size=16, color='#000000', family='Arial, bold'),
        xref="x",
        yref="paper",
        yshift=-50
    )

    return fig

def create_category_radar_chart(category_data, selected_models):
    """Create a radar chart for category safety comparison."""
    categories = list(category_data["categories"].keys())
    
    fig = go.Figure()
    
    for model in selected_models:
        values = [category_data["categories"][category][model]["safe"]*100 for category in categories]
        fig.add_trace(go.Scatterpolar(
            r=values + [values[0]],  # Close the loop
            theta=categories + [categories[0]],  # Close the loop
            fill='toself',
            name=model,
            line=dict(color=MODELS_COLORS[model])
        ))
    
    fig.update_layout(
        polar=dict(
            radialaxis=dict(
                visible=True,
                range=[0, 100]
            )
        ),
        showlegend=True,
        height=500,
        margin=dict(l=50, r=50, t=30, b=30)
    )
    
    return fig

def create_unsafe_response_breakdown(category_data, selected_models):
    """Create a stacked bar chart for unsafe response breakdown."""
    categories = list(category_data["categories"].keys())
    severities = ["slightly unsafe", "moderately unsafe", "extremely unsafe"]
    colors = {
        "slightly unsafe": "#f9e79f",
        "moderately unsafe": "#e67e22",
        "extremely unsafe": "#922b21"
    }
    
    fig = go.Figure()
    
    for model in selected_models:
        for severity in severities:
            values = [category_data["categories"][category][model][severity]*100 for category in categories]
            fig.add_trace(go.Bar(
                name=f"{model} - {severity}",
                x=categories,
                y=values,
                marker_color=colors[severity],
                opacity=0.85,
                text=values,
                texttemplate='%{text:.1f}%',
                textposition='auto',
            ))
    
    fig.update_layout(
        barmode='stack',
        xaxis_title="Category",
        yaxis_title="Percentage (%)",
        height=500,
        showlegend=True,
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=1.02,
            xanchor="right",
            x=1
        ),
        margin=dict(l=60, r=50, t=30, b=80)
    )
    
    return fig

# --- Attack Analysis Functions ---
def create_attack_safety_heatmap(attack_data, selected_models):
    """Create a heatmap for attack safety comparison."""
    attack_types = list(attack_data["safety_scores"].keys())
    
    # Prepare data
    safety_data = np.zeros((len(attack_types), len(selected_models)))
    unsafe_data = np.zeros((len(attack_types), len(selected_models)))
    
    for i, attack in enumerate(attack_types):
        for j, model in enumerate(selected_models):
            safety_data[i, j] = attack_data["safety_scores"][attack][model] * 100
            unsafe_data[i, j] = 100 - safety_data[i, j]
    
    # Create subplots
    fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.2,
                       subplot_titles=("Safety Score", "Unsafe Response Rate"))
    
    # Add heatmaps
    fig.add_trace(
        go.Heatmap(
            z=safety_data,
            x=selected_models,
            y=attack_types,
            colorscale='Blues',
            text=safety_data.round(1),
            texttemplate='%{text}%',
            textfont={"size": 14},
            name="Safe"
        ),
        row=1, col=1
    )
    
    fig.add_trace(
        go.Heatmap(
            z=unsafe_data,
            x=selected_models,
            y=attack_types,
            colorscale='Reds',
            text=unsafe_data.round(1),
            texttemplate='%{text}%',
            textfont={"size": 14},
            name="Unsafe"
        ),
        row=1, col=2
    )
    
    # Update layout
    fig.update_layout(
        height=500,
        showlegend=False,
        margin=dict(l=60, r=50, t=30, b=80)
    )
    
    return fig

def create_attack_radar_chart(attack_data, selected_models):
    """Create a radar chart for attack safety comparison."""
    attack_types = list(attack_data["safety_scores"].keys())
    
    fig = go.Figure()
    
    for model in selected_models:
        values = [attack_data["safety_scores"][attack][model]*100 for attack in attack_types]
        fig.add_trace(go.Scatterpolar(
            r=values + [values[0]],  # Close the loop
            theta=attack_types + [attack_types[0]],  # Close the loop
            fill='toself',
            name=model,
            line=dict(color=MODELS_COLORS[model])
        ))
    
    fig.update_layout(
        polar=dict(
            radialaxis=dict(
                visible=True,
                range=[0, 100]
            )
        ),
        showlegend=True,
        height=500,
        margin=dict(l=50, r=50, t=30, b=30)
    )
    
    return fig

def create_attack_severity_breakdown(attack_data, selected_models):
    """Create a stacked bar chart for attack severity breakdown."""
    attack_types = list(attack_data["safety_scores"].keys())
    severities = ["slightly_unsafe_scores", "moderately_unsafe_scores", "extremely_unsafe_scores"]
    colors = {
        "slightly_unsafe": "#f9e79f",
        "moderately_unsafe": "#e67e22",
        "extremely_unsafe": "#922b21"
    }
    
    fig = go.Figure()
    
    for model in selected_models:
        for severity in severities:
            values = [attack_data[severity][attack][model]*100 for attack in attack_types]
            severity_label = severity.replace("_scores", "").replace("_", " ").title()
            fig.add_trace(go.Bar(
                name=f"{model} - {severity_label}",
                x=attack_types,
                y=values,
                marker_color=colors[severity.split("_")[0] + "_" + severity.split("_")[1]],
                opacity=0.85,
                text=values,
                texttemplate='%{text:.1f}%',
                textposition='auto',
            ))
    
    fig.update_layout(
        barmode='stack',
        xaxis_title="Attack Type",
        yaxis_title="Percentage (%)",
        height=500,
        showlegend=True,
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=1.02,
            xanchor="right",
            x=1
        ),
        margin=dict(l=60, r=50, t=30, b=80)
    )
    
    return fig

def create_attack_comparative_chart(attack_data, selected_models):
    """Create a bar chart for attack comparative analysis."""
    attack_types = list(attack_data["safety_scores"].keys())
    
    fig = go.Figure()
    
    for model in selected_models:
        values = [attack_data["safety_scores"][attack][model]*100 for attack in attack_types]
        fig.add_trace(go.Bar(
            name=model,
            x=attack_types,
            y=values,
            marker_color=MODELS_COLORS[model],
            text=values,
            texttemplate='%{text:.1f}%',
            textposition='auto',
        ))
    
    fig.update_layout(
        barmode='group',
        xaxis_title="Attack Type",
        yaxis_title="Safety Score (%)",
        height=500,
        showlegend=True,
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=1.02,
            xanchor="right",
            x=1
        ),
        margin=dict(l=60, r=50, t=30, b=80)
    )
    
    return fig

def create_detailed_safety_breakdown(category_data, selected_models):
    """Create a detailed safety breakdown visualization as a line chart."""
    import plotly.graph_objects as go
    import pandas as pd
    
    # Prepare data for the breakdown
    status_order = ["Safe", "Slightly Unsafe", "Moderately Unsafe", "Extremely Unsafe"]
    color_map = {
        "Safe": "#1a5276",  # Dark blue
        "Slightly Unsafe": "#f9e79f",  # Light yellow
        "Moderately Unsafe": "#e67e22",  # Orange
        "Extremely Unsafe": "#922b21"  # Dark red
    }
    
    # Create a figure
    fig = go.Figure()
    
    # Process data for each model
    # Reverse the order to match the appearance in your screenshot
    for model in selected_models[::-1]:
        # Calculate overall scores across all categories using weighted average
        categories = list(category_data["categories"].keys())
        category_weights = [category_data["categories"][category]["total"] for category in categories]
        total_examples = sum(category_weights)
        
        total_safe = 0
        total_slightly = 0
        total_moderately = 0
        total_extremely = 0
        
        for i, category in enumerate(categories):
            model_data = category_data["categories"][category][model]
            weight = category_weights[i] / total_examples
            total_safe += model_data["safe"] * weight
            total_slightly += model_data["slightly unsafe"] * weight
            total_moderately += model_data["moderately unsafe"] * weight
            total_extremely += model_data["extremely unsafe"] * weight
        
        # Add trace for each model with segments for each safety status
        fig.add_trace(go.Scatter(
            x=[0, total_safe, total_safe + total_slightly, total_safe + total_slightly + total_moderately, 1],
            y=[model, model, model, model, model],
            mode='lines',
            line=dict(
                width=50,  # Reduced the width to make bars thinner
                color='black'  # This doesn't matter as we're using fill
            ),
            showlegend=False
        ))
        
        # Add colored segments for each safety status
        # Safe segment
        fig.add_trace(go.Scatter(
            x=[0, total_safe],
            y=[model, model],
            mode='lines',
            line=dict(width=50, color=color_map["Safe"]),  # Reduced width
            name="Safe" if model == selected_models[-1] else None,  # Changed to last model for legend
            showlegend=model == selected_models[-1]  # Changed to last model for legend
        ))
        
        # Slightly Unsafe segment
        fig.add_trace(go.Scatter(
            x=[total_safe, total_safe + total_slightly],
            y=[model, model],
            mode='lines',
            line=dict(width=50, color=color_map["Slightly Unsafe"]),  # Reduced width
            name="Slightly Unsafe" if model == selected_models[-1] else None,  # Changed to last model for legend
            showlegend=model == selected_models[-1]  # Changed to last model for legend
        ))
        
        # Moderately Unsafe segment
        fig.add_trace(go.Scatter(
            x=[total_safe + total_slightly, total_safe + total_slightly + total_moderately],
            y=[model, model],
            mode='lines',
            line=dict(width=50, color=color_map["Moderately Unsafe"]),  # Reduced width
            name="Moderately Unsafe" if model == selected_models[-1] else None,  # Changed to last model for legend
            showlegend=model == selected_models[-1]  # Changed to last model for legend
        ))
        
        # Extremely Unsafe segment
        fig.add_trace(go.Scatter(
            x=[total_safe + total_slightly + total_moderately, 1],
            y=[model, model],
            mode='lines',
            line=dict(width=50, color=color_map["Extremely Unsafe"]),  # Reduced width
            name="Extremely Unsafe" if model == selected_models[-1] else None,  # Changed to last model for legend
            showlegend=model == selected_models[-1]  # Changed to last model for legend
        ))
    
    # Update layout
    fig.update_layout(
        title="Safety Performance Breakdown",
        xaxis=dict(
            title="Proportion",
            tickformat=".0%",
            range=[0, 1]
        ),
        yaxis=dict(
            title="",
            categoryorder='total ascending',
            # Reduce space between bars by modifying the categorical spacing
            categoryarray=selected_models,
            # Set smaller line spacing with 0 padding
            linewidth=1,
            tickson="boundaries"
        ),
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=1.02,
            xanchor="right",
            x=1
        ),
        height=500,
        margin=dict(l=60, r=50, t=30, b=80),
        bargap=0.1
    )
    
    return fig

def main():
    try:
        st.set_page_config(
            page_title="ASAS: AStrolabe Arabic Safety Index",
            page_icon="πŸ†",
            layout="wide",
            initial_sidebar_state="expanded"
        )
    except Exception as e:
        pass
    
    st.markdown("""
    <div style="display: flex; align-items: center; margin-bottom: 1rem;">
        <div style="font-size: 2rem; margin-right: 0.5rem;">πŸ†</div>
        <h1 style="margin: 0;">ASAS: AStrolabe Arabic Safety Index</h1>
    </div>
    """, unsafe_allow_html=True)
    
    with st.sidebar:
        st.sidebar.title("Model Selection")
        st.sidebar.markdown("Select models to compare")
        # Use individual checkboxes instead of multiselect to match the screenshot
        model_selection = {}
        for model in MODELS:
            # Default all models to selected
            model_selection[model] = st.sidebar.checkbox(model, value=True, key=f"model_{model}")
        st.sidebar.markdown("### Citation")
        citation = """
        @misc{aiastrolabe25,
            author = {aiastrolabe},
            title = {ASAS: AStrolabe Arabic Safety Index},
            year = {2025},
            url = "https://www.aiastrolabe.com/"
        }
        """
        st.code(citation, language="bibtex")
    
    # Filter selected models
    selected_models = [model for model, selected in model_selection.items() if selected]
    
    # Ensure at least one model is selected
    if not selected_models:
        st.sidebar.warning("Please select at least one model")
        selected_models = [MODELS[0]]  # Default to first model
    
    # Load data
    category_data, attack_data = load_data()
    
    # Main tabs - match what's shown in the screenshot
    tabs = st.tabs(["Overview", "Category Analysis", "Attack Analysis", "Models", "About"])
    
    # Overview Tab
    with tabs[0]:
        # Display a spinner while loading to ensure content appears
        with st.spinner("Loading dashboard..."):
            # Small delay to ensure UI renders properly
            time.sleep(0.5)
            
            # Detailed Safety Breakdown
            fig = create_detailed_safety_breakdown(category_data, selected_models)
            st.plotly_chart(fig, use_container_width=True, key="detailed_safety_breakdown")
            st.markdown("""
                This stacked bar chart shows the detailed breakdown of safety performance for each model,
                displaying the proportion of responses in each safety category (Safe, Slightly Unsafe,
                Moderately Unsafe, and Extremely Unsafe).
            """)

            # Model Safety by Category (Bar Chart) - Added to Overview
            st.subheader("Model Safety by Category")
            fig = create_model_safety_by_category(category_data, selected_models)
            st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, key="model_safety_by_category")
            st.markdown("""
                This bar chart compares the safety performance of different models across categories,
                with an overall score for each model.
            """)
            
            # Overview charts
            st.subheader("Summary Radar Charts")
            col1, col2 = st.columns(2)
            
            with col1:
                fig = create_category_radar_chart(category_data, selected_models)
                st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, key="category_radar_chart")
                st.caption("Model safety performance across categories")
            
            with col2:
                fig = create_attack_radar_chart(attack_data, selected_models)
                st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, key="attack_radar_chart")
                st.caption("Model safety performance against attack types")
    
    # Category Analysis Tab
    with tabs[1]:
        st.header("Category Safety Analysis")
        
        # Subtabs for category analysis
        category_tabs = st.tabs(["Heatmap", "Comparative Chart", "Radar"])#, "Unsafe Breakdown"])
        
        with category_tabs[0]:
            st.subheader("Category Safety Heatmap")
            st.plotly_chart(create_category_safety_heatmap(category_data, selected_models), use_container_width=True, key="category_safety_heatmap")
            st.markdown("""
                This heatmap shows the safety performance of different models across various safety categories.
                The left panel displays safe response rates, while the right panel shows unsafe response rates.
            """)
        with category_tabs[1]:
            st.subheader("Category Comparative Chart")
            st.plotly_chart(create_model_safety_by_category(category_data, selected_models), use_container_width=True, key="category_comparative_chart")
            st.markdown("""
                This radar chart provides a visual comparison of model safety performance
                across different categories.
            """)
        with category_tabs[2]:
            st.subheader("Category Radar Chart")
            st.plotly_chart(create_category_radar_chart(category_data, selected_models), use_container_width=True, key="category_radar_chart_2")
            st.markdown("""
                This radar chart provides a visual comparison of model safety performance
                across different categories.
            """)
        
        # with category_tabs[2]:
        #     st.subheader("Unsafe Response Breakdown")
        #     st.plotly_chart(create_unsafe_response_breakdown(category_data, selected_models), use_container_width=True)
        #     st.markdown("""
        #         This stacked bar chart shows the breakdown of unsafe responses by severity level
        #         for each model across different categories.
        #     """)
    
    # Attack Analysis Tab
    with tabs[2]:
        st.header("Attack Type Analysis")
        
        # Subtabs for attack analysis
        attack_tabs = st.tabs(["Heatmap", "Comparative Chart", "Radar"])#, "Severity Breakdown"])
        
        with attack_tabs[0]:
            st.subheader("Attack Safety Heatmap")
            st.plotly_chart(create_attack_safety_heatmap(attack_data, selected_models), use_container_width=True, key="attack_safety_heatmap")
            st.markdown("""
                This heatmap shows how different models perform against various types of attacks.
                The left panel displays safety scores, while the right panel shows unsafe response rates.
            """)
        
        with attack_tabs[1]:
            st.subheader("Attack Comparative Chart")
            st.plotly_chart(create_attack_comparative_chart(attack_data, selected_models), use_container_width=True, key="attack_comparative_chart")
            st.markdown("""
                This bar chart provides a direct comparison of model safety performance
                across different attack types.
            """)
        
        with attack_tabs[2]:
            st.subheader("Attack Radar Chart")
            st.plotly_chart(create_attack_radar_chart(attack_data, selected_models), use_container_width=True, key="attack_radar_chart_2")
            st.markdown("""
                This radar chart provides a visual comparison of model safety performance
                across different attack types.
            """)
        
        # with attack_tabs[3]:
        #     st.subheader("Attack Severity Breakdown")
        #     st.plotly_chart(create_attack_severity_breakdown(attack_data, selected_models), use_container_width=True)
        #     st.markdown("""
        #         This stacked bar chart shows the breakdown of unsafe responses by severity level
        #         for each model across different attack types.
        #     """)
    
    # Models Tab (New)
    with tabs[3]:
        st.header("Model Comparison")
        
        if not selected_models:
            st.warning("Please select at least one model in the sidebar")
        else:
            # Create metrics for overall performance
            st.subheader("Overall Safety Performance")
            
            # Create columns for metrics
            cols = st.columns(len(selected_models))
            
            # Calculate average safety score across all selected models
            overall_scores = {}
            for model in selected_models:
                categories = list(category_data["categories"].keys())
                scores = [category_data["categories"][category][model]["safe"]*100 for category in categories]
                category_weights = [category_data["categories"][category]["total"] for category in categories]
                total_examples = sum(category_weights)
                overall_score = sum(scores[i] * category_weights[i] / total_examples for i in range(len(scores)))
                overall_scores[model] = overall_score
            
            # Calculate the average across all selected models
            avg_safety_score = sum(overall_scores.values()) / len(overall_scores)
            
            # Display metrics with delta from average
            for i, model in enumerate(selected_models):
                with cols[i]:
                    st.metric(
                        label=model, 
                        value=f"{overall_scores[model]:.1f}%",
                        delta=f"{overall_scores[model] - avg_safety_score:.1f}%",
                        delta_color="normal"
                    )
            
            # Add color explanation
            st.markdown("""
                <div style='text-align: center; margin: 1rem 0; font-size: 0.9rem; color: #666;'>
                    <span style='color: #00A67E;'>●</span> Green: Above average safety performance<br>
                    <span style='color: #FF6B6B;'>●</span> Red: Below average safety performance
                </div>
            """, unsafe_allow_html=True)
            
            # Model details
            st.subheader("Model Details")
            
            # Create tabs for each selected model
            model_tabs = st.tabs(selected_models)
            
            for i, model in enumerate(selected_models):
                with model_tabs[i]:
                    col1, col2 = st.columns(2)
                    
                    with col1:
                        st.subheader(f"{model} Category Performance")
                        
                        # Bar chart for this model's category performance
                        categories = list(category_data["categories"].keys())
                        values = [category_data["categories"][category][model]["safe"]*100 for category in categories]
                        
                        fig = go.Figure()
                        fig.add_trace(go.Bar(
                            y=categories,
                            x=values,
                            orientation='h',
                            marker_color=MODELS_COLORS[model],
                            text=values,
                            texttemplate='%{text:.1f}%',
                            textposition='auto',
                        ))
                        
                        fig.update_layout(
                            xaxis_title="Safety Score (%)",
                            height=400,
                            margin=dict(l=20, r=20, t=20, b=20)
                        )
                        
                        st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, key=f"model_{model}_category_performance")
                    
                    with col2:
                        st.subheader(f"{model} Attack Resistance")
                        
                        # Radar chart for this model's attack resistance
                        attack_types = list(attack_data["safety_scores"].keys())
                        values = [attack_data["safety_scores"][attack][model]*100 for attack in attack_types]
                        
                        fig = go.Figure()
                        fig.add_trace(go.Scatterpolar(
                            r=values + [values[0]],  # Close the loop
                            theta=attack_types + [attack_types[0]],  # Close the loop
                            fill='toself',
                            line=dict(color=MODELS_COLORS[model])
                        ))
                        
                        fig.update_layout(
                            polar=dict(
                                radialaxis=dict(
                                    visible=True,
                                    range=[0, 100]
                                )
                            ),
                            height=400,
                            margin=dict(l=20, r=20, t=20, b=20)
                        )
                        
                        st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, key=f"model_{model}_attack_resistance")
                    
                    st.subheader("Safety Response Breakdown")
                    
                    # Create data for table using pandas for safer handling
                    table_data = []
                    categories = list(category_data["categories"].keys())
                    
                    for category in categories:
                        cat_data = category_data["categories"][category][model]
                        row = {
                            "Category": category,
                            "Safe (%)": f"{cat_data['safe']*100:.1f}",
                            "Slightly Unsafe (%)": f"{cat_data['slightly unsafe']*100:.1f}",
                            "Moderately Unsafe (%)": f"{cat_data['moderately unsafe']*100:.1f}",
                            "Extremely Unsafe (%)": f"{cat_data['extremely unsafe']*100:.1f}"
                        }
                        table_data.append(row)
                    
                    # Convert to pandas DataFrame for safer display
                    df = pd.DataFrame(table_data)
                    st.dataframe(df, use_container_width=True)
    with tabs[4]:
        st.header("About")
        st.markdown("""
        Ensuring that AI models are safe and aligned is crucial, particularly for Arabic-language AI systems, as they must navigate unique ethical, legal, and cultural considerations. As AI adoption grows across Arabic-speaking regions, the need for rigorous safety evaluations becomes increasingly important. Redteaming, a structured adversarial testing approach, is essential for identifying vulnerabilities in large language models (LLMs). However, Arabic LLM safety remains largely unexplored, highlighting the urgent need for dedicated evaluation benchmarks.

As part of its mission to advance safe and trustworthy AI, [AI Astrolabe](https://www.aiastrolabe.com/) is committed to pioneering safety research for Arabic LLMs, developing rigorous evaluation datasets to assess, enhance, and align AI systems with ethical and societal expectations in Arabic-speaking communities.

ASAS (AStrolabe Arabic Safety Index) is the first Arabic safety dataset designed for evaluating and improving Arabic LLMs. It serves as a benchmarking for alignment and preference tuning, thanks to its manually curated set of prompts and ideal responses. ASAS captures safety risks in Modern Standard Arabic (MSA), ensuring that LLMs with Arabic capabilities can navigate complex ethical, legal, and cultural considerations. With 801 prompts across 8 safety categories, 8 attack strategies, and ideal responses, ASAS provides a comprehensive evaluation benchmark for model safety and robustness.

Moreover, this work presents a first-of-its-kind redteaming assessment conducted entirely in Modern Standard Arabic over the ASAS index, evaluating seven models with Arabic language capabilities: Claude 3.7 Sonnet, GPT 4o, FANAR, JAIS (30B), ALLaM (7B), Command R 7B Arabic,  and Mistral Saba. Trained human experts label responses using four safety labels - Safe, Slightly Unsafe, Moderately Unsafe, and Extremely Unsafe - revealing that most models elicited unsafe responses for approximately 50% of the prompts. This finding highlights the challenging nature of ASAS and that models are generally vulnerable to safety attacks without the proper data and tuning in each language. Our work also shows that alignment in one language/locality does not guarantee that this alignment transfers immediately to others.
        """)
    # Add footer
    st.markdown("---")
    st.markdown("""
        <div style='text-align: center; padding: 1rem 0;'>
            <div style='display: flex; justify-content: center; gap: 1rem; margin-bottom: 0.5rem;'>
                <a href='https://x.com/aiastrolabe' target='_blank' style='text-decoration: none; color: inherit;'>
                    <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="currentColor">
                        <path d="M18.244 2.25h3.308l-7.227 8.26 8.502 11.24H16.17l-5.214-6.817L4.99 21.75H1.68l7.73-8.835L1.254 2.25H8.08l4.713 6.231zm-1.161 17.52h1.833L7.084 4.126H5.117z"/>
                    </svg>
                </a>
                <a href='https://www.linkedin.com/company/ai-astrolabe/' target='_blank' style='text-decoration: none; color: inherit;'>
                    <svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="currentColor">
                        <path d="M20.447 20.452h-3.554v-5.569c0-1.328-.027-3.037-1.852-3.037-1.853 0-2.136 1.445-2.136 2.939v5.667H9.351V9h3.414v1.561h.046c.477-.9 1.637-1.85 3.37-1.85 3.601 0 4.267 2.37 4.267 5.455v6.286zM5.337 7.433c-1.144 0-2.063-.926-2.063-2.065 0-1.138.92-2.063 2.063-2.063 1.14 0 2.064.925 2.064 2.063 0 1.139-.925 2.065-2.064 2.065zm1.782 13.019H3.555V9h3.564v11.452zM22.225 0H1.771C.792 0 0 .774 0 1.729v20.542C0 23.227.792 24 1.771 24h20.451C23.2 24 24 23.227 24 22.271V1.729C24 .774 23.2 0 22.222 0h.003z"/>
                    </svg>
                </a>
            </div>
            <div style='margin-bottom: 0.5rem;'>
                <a href='mailto:[email protected]' style='text-decoration: none; color: inherit;'>[email protected]</a>
            </div>
            <div style='margin-bottom: 0.5rem;'>
                131 Continental Dr, Suite 305<br>
                Newark, Delaware 19713
            </div>
            <p style='margin: 0;'>Β© 2025 AI Astrolabe. All rights reserved.</p>
        </div>
    """, unsafe_allow_html=True)

# Use try-except block to catch any errors during execution
try:
    if __name__ == "__main__":
        main()
except Exception as e:
    # Display a user-friendly error message
    st.error(f"An error occurred: {str(e)}")
    st.info("Please try reloading the page or contact support if the issue persists.")