Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,601 Bytes
b821413 c5ecbf5 7d4f47e b195470 0a59b92 c5ecbf5 b195470 c5ecbf5 0a59b92 b821413 26dd92c dc5e4a5 0a59b92 b821413 b195470 0a59b92 c5ecbf5 0a59b92 c5ecbf5 0a59b92 c5ecbf5 0a59b92 c5ecbf5 075cff2 c5ecbf5 0a59b92 c5ecbf5 0a59b92 c5ecbf5 b195470 c42a43b 0a59b92 b195470 0a59b92 b195470 0a59b92 247daa1 0a59b92 b195470 0a59b92 b195470 0a59b92 b195470 0a59b92 b195470 0a59b92 b195470 0a59b92 b195470 0a59b92 b195470 0a59b92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os
import torch
import spaces
import gradio as gr
from threading import Thread
from collections.abc import Iterator
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 4096
MAX_INPUT_TOKEN_LENGTH = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
HF_TOKEN = os.environ['HF_TOKEN']
model_id = "ai4bharat/IndicTrans3-beta"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
LANGUAGES = {
"Hindi": "hin_Deva",
"Bengali": "ben_Beng",
"Telugu": "tel_Telu",
"Marathi": "mar_Deva",
"Tamil": "tam_Taml",
"Urdu": "urd_Arab",
"Gujarati": "guj_Gujr",
"Kannada": "kan_Knda",
"Odia": "ori_Orya",
"Malayalam": "mal_Mlym",
"Punjabi": "pan_Guru",
"Assamese": "asm_Beng",
"Maithili": "mai_Mith",
"Santali": "sat_Olck",
"Kashmiri": "kas_Arab",
"Nepali": "nep_Deva",
"Sindhi": "snd_Arab",
"Konkani": "kok_Deva",
"Dogri": "dgo_Deva",
"Manipuri": "mni_Beng",
"Bodo": "brx_Deva"
}
def format_message_for_translation(message, target_lang):
return f"Translate the following text to {target_lang}: {message}"
@spaces.GPU
def translate_message(
message: str,
chat_history: list[dict],
target_language: str = "Hindi",
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
translation_request = format_message_for_translation(message, target_language)
print(f"Translation request: {translation_request}")
conversation.append({"role": "user", "content": translation_request})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=240.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def store_feedback(rating, feedback_text):
if not rating:
gr.Warning("Please select a rating before submitting feedback.", duration=5)
return None
if not feedback_text or feedback_text.strip() == "":
gr.Warning("Please provide some feedback before submitting.", duration=5)
return None
gr.Info("Feedback submitted successfully!")
return "Thank you for your feedback!"
css = """
# body {
# background-color: #f7f7f7;
# }
.feedback-section {
margin-top: 30px;
border-top: 1px solid #ddd;
padding-top: 20px;
}
.container {
max-width: 90%;
margin: 0 auto;
}
.language-selector {
margin-bottom: 20px;
padding: 10px;
background-color: #ffffff;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
.advanced-options {
margin-top: 20px;
}
"""
DESCRIPTION = """\
IndicTrans3 is the latest state-of-the-art (SOTA) translation model from AI4Bharat, designed to handle translations across <b>22 Indic languages</b> with high accuracy. It supports <b>document-level machine translation (MT)</b> and is built to match the performance of other leading SOTA models. <br>
π’ <b>Training data will be released soon!</b>
<h3>πΉ Features</h3>
β
Supports <b>22 Indic languages</b>
β
Enables <b>document-level translation</b>
β
Achieves <b>SOTA performance</b> in Indic MT
β
Optimized for <b>real-world applications</b>
<h3>π Try It Out!</h3>
1οΈβ£ Enter text in any supported language
2οΈβ£ Select the target language
3οΈβ£ Click <b>Translate</b> and get high-quality results!
Built for <b>linguistic diversity and accessibility</b>, IndicTrans3 is a major step forward in <b>Indic language AI</b>.
π‘ <b>Source:</b> AI4Bharat | Powered by Hugging Face
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_classes="container"):
gr.Markdown("# π IndicTrans3-beta π: Multilingual Translation for 22 Indic Languages </center>")
gr.Markdown(DESCRIPTION)
target_language = gr.Dropdown(
list(LANGUAGES.keys()),
value="Hindi",
label="Which language would you like to translate to?",
elem_id="language-dropdown"
)
chatbot = gr.Chatbot(height=400, elem_id="chatbot")
with gr.Row():
msg = gr.Textbox(
placeholder="Enter text to translate...",
show_label=False,
container=False,
scale=9
)
submit_btn = gr.Button("Translate", scale=1)
gr.Examples(
examples=[
"The Taj Mahal stands majestically along the banks of river Yamuna, a timeless symbol of eternal love.",
"Kumbh Mela is the world's largest gathering of people, where millions of pilgrims bathe in sacred rivers for spiritual purification.",
"India's classical dance forms like Bharatanatyam, Kathak, and Odissi beautifully blend rhythm, expression, and storytelling.",
"Ayurveda, the ancient Indian medical system, focuses on holistic wellness through natural herbs and balanced living.",
"During Diwali, homes across India are decorated with oil lamps, colorful rangoli patterns, and twinkling lights to celebrate the victory of light over darkness."
],
inputs=msg
)
with gr.Accordion("Provide Feedback", open=True):
gr.Markdown("## Rate Translation & Provide Feedback π")
gr.Markdown("Help us improve the translation quality by providing your feedback.")
with gr.Row():
rating = gr.Radio(
["1", "2", "3", "4", "5"],
label="Translation Rating (1-5)"
)
feedback_text = gr.Textbox(
placeholder="Share your feedback about the translation...",
label="Feedback",
lines=3
)
feedback_submit = gr.Button("Submit Feedback")
feedback_result = gr.Textbox(label="", visible=False)
with gr.Accordion("Advanced Options", open=False, elem_classes="advanced-options"):
max_new_tokens = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.1,
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
)
top_k = gr.Slider(
label="Top-k",
minimum=1,
maximum=100,
step=1,
value=50,
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.0,
)
chat_state = gr.State([])
def user(user_message, history, target_lang):
return "", history + [[user_message, None]]
def bot(history, target_lang, max_tokens, temp, top_p_val, top_k_val, rep_penalty):
user_message = history[-1][0]
history[-1][1] = ""
for chunk in translate_message(
user_message,
history[:-1],
target_lang,
max_tokens,
temp,
top_p_val,
top_k_val,
rep_penalty
):
history[-1][1] = chunk
yield history
msg.submit(
user,
[msg, chatbot, target_language],
[msg, chatbot],
queue=False
).then(
bot,
[chatbot, target_language, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
chatbot
)
submit_btn.click(
user,
[msg, chatbot, target_language],
[msg, chatbot],
queue=False
).then(
bot,
[chatbot, target_language, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
chatbot
)
feedback_submit.click(
fn=store_feedback,
inputs=[rating, feedback_text],
outputs=feedback_result
)
if __name__ == "__main__":
demo.launch()
|