Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,119 Bytes
c5ecbf5 7d4f47e c5ecbf5 b195470 c5ecbf5 b195470 c5ecbf5 26dd92c dc5e4a5 c5ecbf5 dc5e4a5 b9f8a9e dc5e4a5 b195470 c5ecbf5 b195470 26dd92c b195470 b9f8a9e b195470 247daa1 b195470 e02e623 b195470 c5ecbf5 b195470 b9f8a9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import torch
import spaces
from collections.abc import Iterator
from threading import Thread
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = 4096
DESCRIPTION = """\
# IndicTrans3-beta π
"""
# if not torch.cuda.is_available():
# DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo does not work on CPU.</p>"
# if torch.cuda.is_available():
model_id = "ai4bharat/IndicTrans3-beta"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", offload_folder="offload")
tokenizer = AutoTokenizer.from_pretrained(model_id)
LANGUAGES = {
"Hindi": "hin_Deva",
"Bengali": "ben_Beng",
"Telugu": "tel_Telu",
"Marathi": "mar_Deva",
"Tamil": "tam_Taml",
"Urdu": "urd_Arab",
"Gujarati": "guj_Gujr",
"Kannada": "kan_Knda",
"Odia": "ori_Orya",
"Malayalam": "mal_Mlym",
"Punjabi": "pan_Guru",
"Assamese": "asm_Beng",
"Maithili": "mai_Mith",
"Santali": "sat_Olck",
"Kashmiri": "kas_Arab",
"Nepali": "nep_Deva",
"Sindhi": "snd_Arab",
"Konkani": "kok_Deva",
"Dogri": "dgo_Deva",
"Manipuri": "mni_Beng",
"Bodo": "brx_Deva"
}
@spaces.GPU
def generate(
tgt_lang: str,
message: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
conversation.append({"role": "user", "content": f"Translate the following text to {tgt_lang}: {message}"})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def store_feedback(rating, feedback_text):
if not rating:
gr.Warning("Please select a rating before submitting feedback.", duration=5)
return None
if not feedback_text or feedback_text.strip() == "":
gr.Warning("Please provide some feedback before submitting.", duration=5)
return None
gr.Info("Feedback submitted successfully!")
return "Thank you for your feedback!"
css = """
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
#header {text-align: center;}
.message { font-size: 1.2em; }
#feedback-section { margin-top: 30px; border-top: 1px solid #ddd; padding-top: 20px; }
"""
with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
gr.Markdown(DESCRIPTION, elem_id="header")
gr.Markdown("Translate text between multiple Indic languages using the latest IndicTrans3 model from AI4Bharat. This model is trained on the --- dataset and supports translation to 22 Indic languages. Setting a state-of-the-art benchmark on multiple translation tasks, IndicTrans3 is a powerful model that can handle complex translation tasks with ease.", elem_id="description")
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
placeholder="Enter text to translate...",
label="Input text",
lines=10,
max_lines=100,
elem_id="input-text"
)
with gr.Column():
tgt_lang = gr.Dropdown(
list(LANGUAGES.keys()),
value="Hindi",
label="Translate To",
elem_id="translate-to"
)
text_output = gr.Textbox(
label="",
lines=10,
max_lines=100,
elem_id="output-text"
)
btn_submit = gr.Button("Translate")
btn_submit.click(
fn=generate,
inputs=[
tgt_lang,
text_input,
gr.Number(value=4096, visible=False),
gr.Number(value=0, visible=False),
gr.Number(value=0.9, visible=False),
gr.Number(value=50, visible=False),
gr.Number(value=0, visible=False)
],
outputs=text_output
)
gr.Examples(
examples=[
["English", "Hello, how are you today? I hope you're doing well.", "Telugu"],
["English", "Hello, how are you today? I hope you're doing well.", "Punjabi"],
["English", "Hello, how are you today? I hope you're doing well.", "Hindi"],
["English", "Hello, how are you today? I hope you're doing well.", "Marathi"],
["English", "Hello, how are you today? I hope you're doing well.", "Malayalam"]
],
inputs=[
tgt_lang,
text_input,
gr.Number(value=4096, visible=False),
gr.Number(value=0, visible=False),
gr.Number(value=0.9, visible=False),
gr.Number(value=50, visible=False),
gr.Number(value=0, visible=False)
],
outputs=text_output,
fn=generate,
cache_examples=True,
examples_per_page=5
)
with gr.Column(elem_id="feedback-section"):
gr.Markdown("## Rate Translation & Provide Feedback π")
gr.Markdown("Help us improve the translation quality by providing your feedback and rating.")
with gr.Row():
rating = gr.Radio(
["1", "2", "3", "4", "5"],
label="Translation Rating (1-5)"
)
feedback_text = gr.Textbox(
placeholder="Share your feedback about the translation...",
label="Feedback",
lines=3
)
feedback_submit = gr.Button("Submit Feedback")
feedback_result = gr.Textbox(label="", visible=False)
feedback_submit.click(
fn=store_feedback,
inputs=[rating, feedback_text],
outputs=feedback_result
)
demo.launch() |