File size: 7,119 Bytes
c5ecbf5
7d4f47e
c5ecbf5
 
b195470
c5ecbf5
b195470
c5ecbf5
 
 
 
26dd92c
 
 
 
 
dc5e4a5
 
c5ecbf5
 
dc5e4a5
 
b9f8a9e
dc5e4a5
b195470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ecbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b195470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26dd92c
b195470
 
 
 
 
 
 
 
b9f8a9e
b195470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247daa1
 
 
 
 
 
 
 
 
 
 
 
 
b195470
 
 
 
 
 
 
 
 
e02e623
 
 
 
 
 
 
 
 
b195470
c5ecbf5
b195470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9f8a9e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
import spaces
from collections.abc import Iterator
from threading import Thread
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = 4096


DESCRIPTION = """\
# IndicTrans3-beta πŸš€
"""

# if not torch.cuda.is_available():
#     DESCRIPTION += "\n<p>Running on CPU πŸ₯Ά This demo does not work on CPU.</p>"


# if torch.cuda.is_available():
model_id = "ai4bharat/IndicTrans3-beta"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", offload_folder="offload")
tokenizer = AutoTokenizer.from_pretrained(model_id)


LANGUAGES = {
    "Hindi": "hin_Deva",
    "Bengali": "ben_Beng",
    "Telugu": "tel_Telu",
    "Marathi": "mar_Deva",
    "Tamil": "tam_Taml",
    "Urdu": "urd_Arab",
    "Gujarati": "guj_Gujr",
    "Kannada": "kan_Knda",
    "Odia": "ori_Orya",
    "Malayalam": "mal_Mlym",
    "Punjabi": "pan_Guru",
    "Assamese": "asm_Beng",
    "Maithili": "mai_Mith",
    "Santali": "sat_Olck",
    "Kashmiri": "kas_Arab",
    "Nepali": "nep_Deva",
    "Sindhi": "snd_Arab",
    "Konkani": "kok_Deva",
    "Dogri": "dgo_Deva",
    "Manipuri": "mni_Beng",
    "Bodo": "brx_Deva"
}



@spaces.GPU
def generate(
    tgt_lang: str,
    message: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:

    conversation = []
    conversation.append({"role": "user", "content": f"Translate the following text to {tgt_lang}: {message}"})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

def store_feedback(rating, feedback_text):
    if not rating:
        gr.Warning("Please select a rating before submitting feedback.", duration=5)
        return None
    
    if not feedback_text or feedback_text.strip() == "":
        gr.Warning("Please provide some feedback before submitting.", duration=5)
        return None
    
    gr.Info("Feedback submitted successfully!")
    return "Thank you for your feedback!"

css = """
      #col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
      #header {text-align: center;}
      .message { font-size: 1.2em; }
      #feedback-section { margin-top: 30px; border-top: 1px solid #ddd; padding-top: 20px; }
      """

with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
    gr.Markdown(DESCRIPTION, elem_id="header")
    gr.Markdown("Translate text between multiple Indic languages using the latest IndicTrans3 model from AI4Bharat. This model is trained on the --- dataset and supports translation to 22 Indic languages. Setting a state-of-the-art benchmark on multiple translation tasks, IndicTrans3 is a powerful model that can handle complex translation tasks with ease.", elem_id="description")
    
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            with gr.Column():
                
                text_input = gr.Textbox(
                    placeholder="Enter text to translate...", 
                    label="Input text", 
                    lines=10,
                    max_lines=100,
                    elem_id="input-text"
                )
                
            with gr.Column():
                tgt_lang = gr.Dropdown(
                    list(LANGUAGES.keys()), 
                    value="Hindi",
                    label="Translate To", 
                    elem_id="translate-to"
                )
                
                text_output = gr.Textbox(
                    label="", 
                    lines=10,
                    max_lines=100,
                    elem_id="output-text"
                )
        
        btn_submit = gr.Button("Translate")
        btn_submit.click(
            fn=generate, 
            inputs=[
                tgt_lang, 
                text_input, 
                gr.Number(value=4096, visible=False),
                gr.Number(value=0, visible=False),
                gr.Number(value=0.9, visible=False),
                gr.Number(value=50, visible=False),
                gr.Number(value=0, visible=False)
            ], 
            outputs=text_output
        )
        
        gr.Examples(
            examples=[
                ["English", "Hello, how are you today? I hope you're doing well.", "Telugu"],
                ["English", "Hello, how are you today? I hope you're doing well.", "Punjabi"],
                ["English", "Hello, how are you today? I hope you're doing well.", "Hindi"],
                ["English", "Hello, how are you today? I hope you're doing well.", "Marathi"],
                ["English", "Hello, how are you today? I hope you're doing well.", "Malayalam"]
            ],
            inputs=[
                tgt_lang, 
                text_input, 
                gr.Number(value=4096, visible=False),
                gr.Number(value=0, visible=False),
                gr.Number(value=0.9, visible=False),
                gr.Number(value=50, visible=False),
                gr.Number(value=0, visible=False)
            ], 
            outputs=text_output,
            fn=generate,
            cache_examples=True,
            examples_per_page=5
        )
        
        with gr.Column(elem_id="feedback-section"):
            gr.Markdown("## Rate Translation & Provide Feedback πŸ“")
            gr.Markdown("Help us improve the translation quality by providing your feedback and rating.")
            with gr.Row():
                rating = gr.Radio(
                    ["1", "2", "3", "4", "5"],
                    label="Translation Rating (1-5)"
                )
            
            feedback_text = gr.Textbox(
                placeholder="Share your feedback about the translation...",
                label="Feedback",
                lines=3
            )
            
            feedback_submit = gr.Button("Submit Feedback")
            feedback_result = gr.Textbox(label="", visible=False)
            
            feedback_submit.click(
                fn=store_feedback, 
                inputs=[rating, feedback_text], 
                outputs=feedback_result
            )

demo.launch()