Spaces:
Running
Running
File size: 11,379 Bytes
9714711 b8077d0 9714711 b8077d0 97ba84c b8077d0 9714711 b8077d0 5015c53 b8077d0 9714711 b8077d0 97ba84c b8077d0 ddd87aa 5015c53 b8077d0 5015c53 b8077d0 9714711 b8077d0 5015c53 b8077d0 8e5df59 b8077d0 9714711 b8077d0 9714711 97ba84c 5015c53 97ba84c 5015c53 97ba84c 9714711 5015c53 8e5df59 9714711 b8077d0 97ba84c b8077d0 5015c53 97ba84c 9714711 5015c53 9714711 5015c53 9714711 5015c53 9714711 5015c53 9714711 8e5df59 97ba84c 9714711 97ba84c 5015c53 9714711 b8077d0 8e5df59 b8077d0 8e5df59 9714711 b8077d0 5015c53 1846d66 b8077d0 5015c53 b8077d0 1846d66 b8077d0 5015c53 b8077d0 5015c53 b8077d0 d00dcd7 b8077d0 5015c53 b8077d0 1846d66 b8077d0 5015c53 b8077d0 1846d66 b8077d0 5015c53 b8077d0 5015c53 9714711 b8077d0 5015c53 b8077d0 5015c53 4404f06 b8077d0 5015c53 b8077d0 5015c53 9714711 b8077d0 1846d66 b8077d0 1846d66 5015c53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import json
import logging
import os
from pathlib import Path
import time
import warnings
from PIL import Image
from dawsonia import io
from dawsonia import digitize
from dawsonia.ml import ml
from dawsonia.typing import Probability
import gradio as gr
from gradio_modal import Modal
import numpy as np
from numpy.typing import NDArray
import pandas as pd
import pooch
import yaml
from .visualizer import Page, TableCell
logger = logging.getLogger(__name__)
# Max number of images a user can upload at once
MAX_IMAGES = int(os.environ.get("MAX_IMAGES", 5))
# Setup the cache directory to point to the directory where the example images
# are located. The images must lay in the cache directory because otherwise they
# have to be reuploaded when drag-and-dropped to the input image widget.
GRADIO_CACHE = os.getenv("GRADIO_CACHE_DIR", ".gradio_cache")
DATA_CACHE = os.path.join(GRADIO_CACHE, "data")
EXAMPLES_DIRECTORY = os.path.join(os.getcwd(), "examples")
# Example books
PIPELINES: dict[str, dict[str, str]] = {
"bjuröklubb": dict(
url="https://git.smhi.se/ai-for-obs/data/-/raw/688c04f13e8e946962792fe4b4e0ded98800b154/raw_zarr/BJUR%C3%96KLUBB/DAGBOK_Bjur%C3%B6klubb_Station_Jan-Dec_1928.zarr.zip",
known_hash="sha256:6d87b7f79836ae6373cfab11260fe28787d93fe16199fefede6697ccd750f71a",
),
"härnösand": dict(
url="https://git.smhi.se/ai-for-obs/data/-/raw/688c04f13e8e946962792fe4b4e0ded98800b154/raw_zarr/H%C3%84RN%C3%96SAND/DAGBOK_H%C3%A4rn%C3%B6sand_Station_1934.zarr.zip",
known_hash="sha256:a58fdb6521214d0bd569c9325ce78d696738de28ce6ec869cde0d46616b697f2",
),
}
def run_dawsonia(
table_fmt_config_override,
first_page,
last_page,
prob_thresh,
book,
gallery,
progress=gr.Progress(),
):
if book is None:
raise ValueError("You need to select / upload the pages to digitize")
progress(0, desc="Dawsonia: starting")
model_path = Path("data/models/dawsonia/2024-07-02")
output_path = Path("output")
print("Dawsonia: digitizing", book)
table_fmt = book.table_format
output_path_book = output_path / book.station_name
output_path_book.mkdir(exist_ok=True, parents=True)
(output_path_book / "probablities").mkdir(exist_ok=True)
init_data: list[dict[str, NDArray]] = [
{
key: np.empty(len(table_fmt.rows), dtype="O")
for key in table_fmt.columns[table_idx]
}
for table_idx in table_fmt.preproc.idx_tables_size_verify
]
collection = []
images = []
with warnings.catch_warnings():
warnings.simplefilter("ignore", FutureWarning)
for page_number, im_from_gallery in zip(range(first_page, last_page), gallery):
output_path_page = output_path_book / str(page_number)
gr.Info(f"Digitizing {page_number = }")
if (
not (output_path_book / str(page_number))
.with_suffix(".parquet")
.exists()
):
digitize.digitize_page_and_write_output(
book,
init_data,
page_number=page_number,
date_str=f"0000-page-{page_number}",
model_path=model_path,
model_predict=ml.model_predict,
prob_thresh=prob_thresh,
output_path_page=output_path_page,
output_text_fmt=False,
debug=False,
)
progress_value = (page_number - first_page) / max(1, last_page - first_page)
if results := read_page(
output_path_book,
str(page_number),
prob_thresh,
progress,
progress_value,
): # , im_from_gallery[0])
page, im = results
collection.append(page)
images.append(im)
else:
gr.Info(f"No tables detected in {page_number = }")
gr.Info("Pages were succesfully digitized ✨")
# yield collection, images
yield collection, gr.skip()
def read_page(
output_path_book: Path,
prefix: str,
prob_thresh: float,
progress,
progress_value,
im_path_from_gallery: str = "",
):
stats = digitize.Statistics.from_json(
(output_path_book / "statistics" / prefix).with_suffix(".json")
)
print(stats)
progress(progress_value, desc=f"Dawsonia: {stats!s:.50}")
if stats.tables_detected > 0:
values_df = pd.read_parquet((output_path_book / prefix).with_suffix(".parquet"))
prob_df = pd.read_parquet(
(output_path_book / "probablities" / prefix).with_suffix(".parquet")
)
table_meta = json.loads(
(output_path_book / "table_meta" / prefix).with_suffix(".json").read_text()
)
with Image.open(
image_path := (output_path_book / "pages" / prefix).with_suffix(".webp")
) as im:
width = im.width
height = im.height
values_array = values_df.values.flatten()
prob_array = prob_df.values.flatten()
bbox_array = np.hstack(table_meta["table_positions"]).reshape(-1, 4)
cells = [
make_cell(value, bbox)
for value, prob, bbox in zip(values_array, prob_array, bbox_array)
if prob > prob_thresh
]
return Page(width, height, cells, im_path_from_gallery or str(image_path)), im
def make_cell(value: str, bbox: NDArray[np.int64]):
y, x, h, w = bbox
xmin, ymin = x - w // 2, y - h // 2
xmax, ymax = x + w // 2, y + h // 2
polygon = (xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax), (xmin, ymin)
return TableCell(polygon, text_x=x - w // 4, text_y=y, text=value)
def all_example_images() -> list[str]:
"""
Get paths to all example images.
"""
examples = [
os.path.join(EXAMPLES_DIRECTORY, f"{pipeline}.png") for pipeline in PIPELINES
]
return examples
def get_selected_example_image(
first_page, last_page, event: gr.SelectData
) -> tuple[str, io.Book, str] | None:
"""
Get the name of the pipeline that corresponds to the selected image.
"""
# for name, details in PIPELINES.items():
name, _ext = event.value["image"]["orig_name"].split(".")
station_tf = Path("table_formats", name).with_suffix(".toml")
if (last_page - first_page) > MAX_IMAGES:
raise ValueError(f"Maximum images you can digitize is set to: {MAX_IMAGES}")
if name in PIPELINES:
book_path = pooch.retrieve(**PIPELINES[name], path=DATA_CACHE)
first, last, book = io.read_book(book_path)
book._name = name
book.size_cell = [1.0, 1.0, 1.0, 1.0]
return (
[book.read_image(pg) for pg in range(first_page, last_page)],
book,
book_path,
station_tf.read_text(),
)
def overwrite_table_format_file(book: io.Book, book_path, table_fmt: str):
name = book.station_name
table_fmt_dir = Path("table_formats")
(table_fmt_dir / name).with_suffix(".toml").write_text(table_fmt)
book.table_format = io.read_specific_table_format(table_fmt_dir, Path(book_path))
gr.Info(f"Overwritten table format file for {name}")
return book
with gr.Blocks() as submit:
gr.Markdown(
"🛈 Select or upload the image you want to transcribe. You can upload up to five images at a time."
)
batch_book_state = gr.State()
batch_book_path_state = gr.State()
collection_submit_state = gr.State()
with gr.Group():
with gr.Row(equal_height=True):
with gr.Column(scale=5):
batch_image_gallery = gr.Gallery(
# file_types=[".pdf", ".zarr.zip"],
label="Book to digitize (should be a .pdf or .zarr.zip file)",
interactive=True,
object_fit="scale-down",
scale=1.0,
)
with gr.Column(scale=2):
first_page = gr.Number(3, label="First page of the book", precision=0)
last_page = gr.Number(5, label="Last page of the book", precision=0)
examples = gr.Gallery(
all_example_images(),
label="Examples",
interactive=False,
allow_preview=False,
object_fit="scale-down",
min_width=250,
)
upload_button = gr.UploadButton(min_width=200)
with Modal(visible=False) as edit_table_fmt_modal:
with gr.Column():
gr.Markdown(
"## Table format configuration\n"
"Write a custom table format, overriding the default one. "
"Click on the **Save** button when you are done."
)
save_tf_button = gr.Button(
"Save", variant="primary", scale=0, min_width=200
)
gr.HTML(
(
"<a href='https://dawsonia.readthedocs.io/en/latest/user_guide/misc.html#table-formats' target='_blank'>"
"Read the docs for the table-formats spec"
"</a>. "
),
padding=False,
elem_classes="pipeline-help",
)
table_fmt_config_override = gr.Code("", language="python")
with gr.Row():
prob_thresh = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.75,
step=0.05,
label="Prediction probability threshold",
)
with gr.Row():
run_button = gr.Button("Digitize", variant="primary", scale=0, min_width=200)
edit_table_fmt_button = gr.Button(
"Edit table format", variant="secondary", scale=0, min_width=200
)
# All events interactions below
examples.select(
get_selected_example_image,
(first_page, last_page),
(
batch_image_gallery,
batch_book_state,
batch_book_path_state,
table_fmt_config_override,
),
trigger_mode="always_last",
)
@batch_image_gallery.upload(
inputs=batch_image_gallery,
outputs=[batch_image_gallery],
)
def validate_images(images):
print(images)
if len(images) > MAX_IMAGES:
gr.Warning(f"Maximum images you can upload is set to: {MAX_IMAGES}")
return gr.update(value=None)
gr.Warning(
"Digitizing uploaded images is not implemented yet! Work in progress!"
)
raise NotImplementedError("WIP")
return images
run_button.click(
fn=run_dawsonia,
inputs=(
table_fmt_config_override,
first_page,
last_page,
prob_thresh,
batch_book_state,
batch_image_gallery,
),
outputs=(collection_submit_state, batch_image_gallery),
)
## Table formats modal dialog box
edit_table_fmt_button.click(lambda: Modal(visible=True), None, edit_table_fmt_modal)
save_tf_button.click(
overwrite_table_format_file,
(batch_book_state, batch_book_path_state, table_fmt_config_override),
(batch_book_state,),
)
|