|
from diffusers_helper.hf_login import login |
|
|
|
import os |
|
|
|
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))) |
|
|
|
import gradio as gr |
|
import torch |
|
import traceback |
|
import einops |
|
import safetensors.torch as sf |
|
import numpy as np |
|
import math |
|
|
|
|
|
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None |
|
|
|
|
|
if IN_HF_SPACE: |
|
try: |
|
import spaces |
|
print("在Hugging Face Space环境中运行,已导入spaces模块") |
|
except ImportError: |
|
print("未能导入spaces模块,可能不在Hugging Face Space环境中") |
|
|
|
from PIL import Image |
|
from diffusers import AutoencoderKLHunyuanVideo |
|
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer |
|
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake |
|
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp |
|
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked |
|
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan |
|
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE |
|
from diffusers_helper.thread_utils import AsyncStream, async_run |
|
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html |
|
from transformers import SiglipImageProcessor, SiglipVisionModel |
|
from diffusers_helper.clip_vision import hf_clip_vision_encode |
|
from diffusers_helper.bucket_tools import find_nearest_bucket |
|
|
|
outputs_folder = './outputs/' |
|
os.makedirs(outputs_folder, exist_ok=True) |
|
|
|
|
|
if not IN_HF_SPACE: |
|
|
|
try: |
|
if torch.cuda.is_available(): |
|
free_mem_gb = get_cuda_free_memory_gb(gpu) |
|
print(f'Free VRAM {free_mem_gb} GB') |
|
else: |
|
free_mem_gb = 6.0 |
|
print("CUDA不可用,使用默认的内存设置") |
|
except Exception as e: |
|
free_mem_gb = 6.0 |
|
print(f"获取CUDA内存时出错: {e},使用默认的内存设置") |
|
|
|
high_vram = free_mem_gb > 60 |
|
print(f'High-VRAM Mode: {high_vram}') |
|
else: |
|
|
|
print("在Spaces环境中使用默认内存设置") |
|
free_mem_gb = 60.0 |
|
high_vram = True |
|
print(f'High-VRAM Mode: {high_vram}') |
|
|
|
|
|
models = {} |
|
|
|
|
|
def load_models(): |
|
global models |
|
|
|
print("开始加载模型...") |
|
|
|
|
|
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu() |
|
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu() |
|
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer') |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2') |
|
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu() |
|
|
|
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor') |
|
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu() |
|
|
|
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu() |
|
|
|
vae.eval() |
|
text_encoder.eval() |
|
text_encoder_2.eval() |
|
image_encoder.eval() |
|
transformer.eval() |
|
|
|
if not high_vram: |
|
vae.enable_slicing() |
|
vae.enable_tiling() |
|
|
|
transformer.high_quality_fp32_output_for_inference = True |
|
print('transformer.high_quality_fp32_output_for_inference = True') |
|
|
|
transformer.to(dtype=torch.bfloat16) |
|
vae.to(dtype=torch.float16) |
|
image_encoder.to(dtype=torch.float16) |
|
text_encoder.to(dtype=torch.float16) |
|
text_encoder_2.to(dtype=torch.float16) |
|
|
|
vae.requires_grad_(False) |
|
text_encoder.requires_grad_(False) |
|
text_encoder_2.requires_grad_(False) |
|
image_encoder.requires_grad_(False) |
|
transformer.requires_grad_(False) |
|
|
|
if torch.cuda.is_available(): |
|
if not high_vram: |
|
|
|
DynamicSwapInstaller.install_model(transformer, device=gpu) |
|
DynamicSwapInstaller.install_model(text_encoder, device=gpu) |
|
else: |
|
text_encoder.to(gpu) |
|
text_encoder_2.to(gpu) |
|
image_encoder.to(gpu) |
|
vae.to(gpu) |
|
transformer.to(gpu) |
|
|
|
|
|
models = { |
|
'text_encoder': text_encoder, |
|
'text_encoder_2': text_encoder_2, |
|
'tokenizer': tokenizer, |
|
'tokenizer_2': tokenizer_2, |
|
'vae': vae, |
|
'feature_extractor': feature_extractor, |
|
'image_encoder': image_encoder, |
|
'transformer': transformer |
|
} |
|
|
|
return models |
|
|
|
|
|
|
|
if IN_HF_SPACE and 'spaces' in globals(): |
|
@spaces.GPU |
|
def initialize_models(): |
|
"""在@spaces.GPU装饰器内初始化模型""" |
|
return load_models() |
|
|
|
|
|
|
|
def get_models(): |
|
"""获取模型,如果尚未加载则加载模型""" |
|
global models |
|
|
|
if not models: |
|
if IN_HF_SPACE and 'spaces' in globals(): |
|
print("使用@spaces.GPU装饰器加载模型") |
|
models = initialize_models() |
|
else: |
|
print("直接加载模型") |
|
load_models() |
|
|
|
return models |
|
|
|
|
|
stream = AsyncStream() |
|
|
|
|
|
@torch.no_grad() |
|
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): |
|
|
|
models = get_models() |
|
text_encoder = models['text_encoder'] |
|
text_encoder_2 = models['text_encoder_2'] |
|
tokenizer = models['tokenizer'] |
|
tokenizer_2 = models['tokenizer_2'] |
|
vae = models['vae'] |
|
feature_extractor = models['feature_extractor'] |
|
image_encoder = models['image_encoder'] |
|
transformer = models['transformer'] |
|
|
|
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4) |
|
total_latent_sections = int(max(round(total_latent_sections), 1)) |
|
|
|
job_id = generate_timestamp() |
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...')))) |
|
|
|
try: |
|
|
|
if not high_vram: |
|
unload_complete_models( |
|
text_encoder, text_encoder_2, image_encoder, vae, transformer |
|
) |
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...')))) |
|
|
|
if not high_vram: |
|
fake_diffusers_current_device(text_encoder, gpu) |
|
load_model_as_complete(text_encoder_2, target_device=gpu) |
|
|
|
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) |
|
|
|
if cfg == 1: |
|
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler) |
|
else: |
|
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2) |
|
|
|
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512) |
|
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512) |
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...')))) |
|
|
|
H, W, C = input_image.shape |
|
height, width = find_nearest_bucket(H, W, resolution=640) |
|
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height) |
|
|
|
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png')) |
|
|
|
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1 |
|
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None] |
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...')))) |
|
|
|
if not high_vram: |
|
load_model_as_complete(vae, target_device=gpu) |
|
|
|
start_latent = vae_encode(input_image_pt, vae) |
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...')))) |
|
|
|
if not high_vram: |
|
load_model_as_complete(image_encoder, target_device=gpu) |
|
|
|
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder) |
|
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state |
|
|
|
|
|
|
|
llama_vec = llama_vec.to(transformer.dtype) |
|
llama_vec_n = llama_vec_n.to(transformer.dtype) |
|
clip_l_pooler = clip_l_pooler.to(transformer.dtype) |
|
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype) |
|
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype) |
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...')))) |
|
|
|
rnd = torch.Generator("cpu").manual_seed(seed) |
|
num_frames = latent_window_size * 4 - 3 |
|
|
|
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu() |
|
history_pixels = None |
|
total_generated_latent_frames = 0 |
|
|
|
latent_paddings = reversed(range(total_latent_sections)) |
|
|
|
if total_latent_sections > 4: |
|
|
|
|
|
|
|
|
|
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0] |
|
|
|
for latent_padding in latent_paddings: |
|
is_last_section = latent_padding == 0 |
|
latent_padding_size = latent_padding * latent_window_size |
|
|
|
if stream.input_queue.top() == 'end': |
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}') |
|
|
|
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0) |
|
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1) |
|
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1) |
|
|
|
clean_latents_pre = start_latent.to(history_latents) |
|
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2) |
|
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2) |
|
|
|
if not high_vram: |
|
unload_complete_models() |
|
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation) |
|
|
|
if use_teacache: |
|
transformer.initialize_teacache(enable_teacache=True, num_steps=steps) |
|
else: |
|
transformer.initialize_teacache(enable_teacache=False) |
|
|
|
def callback(d): |
|
preview = d['denoised'] |
|
preview = vae_decode_fake(preview) |
|
|
|
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8) |
|
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c') |
|
|
|
if stream.input_queue.top() == 'end': |
|
stream.output_queue.push(('end', None)) |
|
raise KeyboardInterrupt('User ends the task.') |
|
|
|
current_step = d['i'] + 1 |
|
percentage = int(100.0 * current_step / steps) |
|
hint = f'Sampling {current_step}/{steps}' |
|
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...' |
|
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint)))) |
|
return |
|
|
|
generated_latents = sample_hunyuan( |
|
transformer=transformer, |
|
sampler='unipc', |
|
width=width, |
|
height=height, |
|
frames=num_frames, |
|
real_guidance_scale=cfg, |
|
distilled_guidance_scale=gs, |
|
guidance_rescale=rs, |
|
|
|
num_inference_steps=steps, |
|
generator=rnd, |
|
prompt_embeds=llama_vec, |
|
prompt_embeds_mask=llama_attention_mask, |
|
prompt_poolers=clip_l_pooler, |
|
negative_prompt_embeds=llama_vec_n, |
|
negative_prompt_embeds_mask=llama_attention_mask_n, |
|
negative_prompt_poolers=clip_l_pooler_n, |
|
device=gpu, |
|
dtype=torch.bfloat16, |
|
image_embeddings=image_encoder_last_hidden_state, |
|
latent_indices=latent_indices, |
|
clean_latents=clean_latents, |
|
clean_latent_indices=clean_latent_indices, |
|
clean_latents_2x=clean_latents_2x, |
|
clean_latent_2x_indices=clean_latent_2x_indices, |
|
clean_latents_4x=clean_latents_4x, |
|
clean_latent_4x_indices=clean_latent_4x_indices, |
|
callback=callback, |
|
) |
|
|
|
if is_last_section: |
|
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2) |
|
|
|
total_generated_latent_frames += int(generated_latents.shape[2]) |
|
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2) |
|
|
|
if not high_vram: |
|
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8) |
|
load_model_as_complete(vae, target_device=gpu) |
|
|
|
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :] |
|
|
|
if history_pixels is None: |
|
history_pixels = vae_decode(real_history_latents, vae).cpu() |
|
else: |
|
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2) |
|
overlapped_frames = latent_window_size * 4 - 3 |
|
|
|
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu() |
|
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames) |
|
|
|
if not high_vram: |
|
unload_complete_models() |
|
|
|
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4') |
|
|
|
save_bcthw_as_mp4(history_pixels, output_filename, fps=30) |
|
|
|
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}') |
|
|
|
stream.output_queue.push(('file', output_filename)) |
|
|
|
if is_last_section: |
|
break |
|
except: |
|
traceback.print_exc() |
|
|
|
if not high_vram: |
|
unload_complete_models( |
|
text_encoder, text_encoder_2, image_encoder, vae, transformer |
|
) |
|
|
|
stream.output_queue.push(('end', None)) |
|
return |
|
|
|
|
|
|
|
if IN_HF_SPACE and 'spaces' in globals(): |
|
@spaces.GPU |
|
def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): |
|
global stream |
|
assert input_image is not None, 'No input image!' |
|
|
|
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) |
|
|
|
stream = AsyncStream() |
|
|
|
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache) |
|
|
|
output_filename = None |
|
|
|
while True: |
|
flag, data = stream.output_queue.next() |
|
|
|
if flag == 'file': |
|
output_filename = data |
|
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) |
|
|
|
if flag == 'progress': |
|
preview, desc, html = data |
|
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) |
|
|
|
if flag == 'end': |
|
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) |
|
break |
|
|
|
process = process_with_gpu |
|
else: |
|
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache): |
|
global stream |
|
assert input_image is not None, 'No input image!' |
|
|
|
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True) |
|
|
|
stream = AsyncStream() |
|
|
|
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache) |
|
|
|
output_filename = None |
|
|
|
while True: |
|
flag, data = stream.output_queue.next() |
|
|
|
if flag == 'file': |
|
output_filename = data |
|
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True) |
|
|
|
if flag == 'progress': |
|
preview, desc, html = data |
|
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) |
|
|
|
if flag == 'end': |
|
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False) |
|
break |
|
|
|
|
|
def end_process(): |
|
stream.input_queue.push('end') |
|
|
|
|
|
quick_prompts = [ |
|
'The girl dances gracefully, with clear movements, full of charm.', |
|
'A character doing some simple body movements.', |
|
] |
|
quick_prompts = [[x] for x in quick_prompts] |
|
|
|
|
|
css = make_progress_bar_css() |
|
block = gr.Blocks(css=css).queue() |
|
with block: |
|
gr.Markdown('# FramePack - 图像到视频生成') |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(sources='upload', type="numpy", label="上传图像", height=320) |
|
prompt = gr.Textbox(label="提示词", value='') |
|
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='快速提示词列表', samples_per_page=1000, components=[prompt]) |
|
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False) |
|
|
|
with gr.Row(): |
|
start_button = gr.Button(value="开始生成") |
|
end_button = gr.Button(value="结束生成", interactive=False) |
|
|
|
with gr.Group(): |
|
use_teacache = gr.Checkbox(label='使用TeaCache', value=True, info='速度更快,但可能会使手指和手的生成效果稍差。') |
|
|
|
n_prompt = gr.Textbox(label="负面提示词", value="", visible=False) |
|
seed = gr.Number(label="随机种子", value=31337, precision=0) |
|
|
|
total_second_length = gr.Slider(label="视频长度(秒)", minimum=1, maximum=120, value=5, step=0.1) |
|
latent_window_size = gr.Slider(label="潜在窗口大小", minimum=1, maximum=33, value=9, step=1, visible=False) |
|
steps = gr.Slider(label="推理步数", minimum=1, maximum=100, value=25, step=1, info='不建议修改此值。') |
|
|
|
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) |
|
gs = gr.Slider(label="蒸馏CFG比例", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='不建议修改此值。') |
|
rs = gr.Slider(label="CFG重缩放", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) |
|
|
|
gpu_memory_preservation = gr.Slider(label="GPU推理保留内存(GB)(值越大速度越慢)", minimum=6, maximum=128, value=6, step=0.1, info="如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。") |
|
|
|
with gr.Column(): |
|
preview_image = gr.Image(label="下一批潜变量", height=200, visible=False) |
|
result_video = gr.Video(label="生成的视频", autoplay=True, show_share_button=False, height=512, loop=True) |
|
gr.Markdown('注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。') |
|
progress_desc = gr.Markdown('', elem_classes='no-generating-animation') |
|
progress_bar = gr.HTML('', elem_classes='no-generating-animation') |
|
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache] |
|
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]) |
|
end_button.click(fn=end_process) |
|
|
|
|
|
block.launch() |