AA_TT1 / app.py
ahm14's picture
Update app.py
dc1177c verified
raw
history blame
14.2 kB
import os
import pandas as pd
import streamlit as st
import re
import logging
import nltk
from docx import Document
from docx.enum.text import WD_ALIGN_PARAGRAPH
from docx.shared import Pt
import io
from langdetect import detect
from collections import Counter
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from transformers import pipeline
# Load environment variables
load_dotenv()
# Check if Groq API key is available
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
logging.error("Missing Groq API key. Please set the GROQ_API_KEY environment variable.")
st.error("API key is missing. Please provide a valid API key.")
# Initialize logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Initialize LLM (Groq API)
llm = ChatGroq(temperature=0.5, groq_api_key=GROQ_API_KEY, model_name="llama3-8b-8192")
# Download required NLTK resources
nltk.download("punkt")
# Tone categories for fallback method
tone_categories = {
"Emotional": ["urgent", "violence", "disappearances", "forced", "killing", "crisis", "concern"],
"Harsh": ["corrupt", "oppression", "failure", "repression", "exploit", "unjust", "authoritarian"],
"Somber": ["tragedy", "loss", "pain", "sorrow", "mourning", "grief", "devastation"],
"Motivational": ["rise", "resist", "mobilize", "inspire", "courage", "change", "determination"],
"Informative": ["announcement", "event", "scheduled", "update", "details", "protest", "statement"],
"Positive": ["progress", "unity", "hope", "victory", "together", "solidarity", "uplifting"],
"Angry": ["rage", "injustice", "fury", "resentment", "outrage", "betrayal"],
"Fearful": ["threat", "danger", "terror", "panic", "risk", "warning"],
"Sarcastic": ["brilliant", "great job", "amazing", "what a surprise", "well done", "as expected"],
"Hopeful": ["optimism", "better future", "faith", "confidence", "looking forward"]
}
# Frame categories for fallback method
frame_categories = {
"Human Rights & Justice": ["rights", "law", "justice", "legal", "humanitarian"],
"Political & State Accountability": ["government", "policy", "state", "corruption", "accountability"],
"Gender & Patriarchy": ["gender", "women", "violence", "patriarchy", "equality"],
"Religious Freedom & Persecution": ["religion", "persecution", "minorities", "intolerance", "faith"],
"Grassroots Mobilization": ["activism", "community", "movement", "local", "mobilization"],
"Environmental Crisis & Activism": ["climate", "deforestation", "water", "pollution", "sustainability"],
"Anti-Extremism & Anti-Violence": ["extremism", "violence", "hate speech", "radicalism", "mob attack"],
"Social Inequality & Economic Disparities": ["class privilege", "labor rights", "economic", "discrimination"],
"Activism & Advocacy": ["justice", "rights", "demand", "protest", "march", "campaign", "freedom of speech"],
"Systemic Oppression": ["discrimination", "oppression", "minorities", "marginalized", "exclusion"],
"Intersectionality": ["intersecting", "women", "minorities", "struggles", "multiple oppression"],
"Call to Action": ["join us", "sign petition", "take action", "mobilize", "support movement"],
"Empowerment & Resistance": ["empower", "resist", "challenge", "fight for", "stand up"],
"Climate Justice": ["environment", "climate change", "sustainability", "biodiversity", "pollution"],
"Human Rights Advocacy": ["human rights", "violations", "honor killing", "workplace discrimination", "law reform"]
}
# Detect language
def detect_language(text):
try:
return detect(text)
except Exception as e:
logging.error(f"Error detecting language: {e}")
return "unknown"
# Extract tone using Groq API (or fallback method)
def extract_tone(text):
try:
response = llm.chat([{"role": "system", "content": "Analyze the tone of the following text and provide descriptive tone labels."},
{"role": "user", "content": text}])
return response["choices"][0]["message"]["content"].split(", ")
except Exception as e:
logging.error(f"Groq API error: {e}")
return extract_tone_fallback(text)
# Fallback method for tone extraction
def extract_tone_fallback(text):
detected_tones = set()
text_lower = text.lower()
for category, keywords in tone_categories.items():
if any(word in text_lower for word in keywords):
detected_tones.add(category)
return list(detected_tones) if detected_tones else ["Neutral"]
# Extract hashtags
def extract_hashtags(text):
return re.findall(r"#\w+", text)
# -------------------------------------------------------------------
# New functions for frame categorization and display
# -------------------------------------------------------------------
def get_frame_category_mapping(text):
"""
Returns a mapping of every frame (from frame_categories) to one of the four categories.
Detected frames are assigned a focus level based on keyword frequency:
- Top detected: "Major Focus"
- Next up to two: "Significant Focus"
- Remaining detected: "Minor Mention"
Frames not detected get "Not Applicable".
"""
text_lower = text.lower()
# Calculate frequency for each frame
frame_freq = {}
for frame, keywords in frame_categories.items():
freq = sum(1 for word in keywords if word in text_lower)
frame_freq[frame] = freq
# Identify detected frames (frequency > 0) and sort descending
detected = [(frame, freq) for frame, freq in frame_freq.items() if freq > 0]
detected.sort(key=lambda x: x[1], reverse=True)
category_mapping = {}
if detected:
# Highest frequency frame as Major Focus
category_mapping[detected[0][0]] = "Major Focus"
# Next up to two frames as Significant Focus
for frame, _ in detected[1:3]:
category_mapping[frame] = "Significant Focus"
# Remaining detected frames as Minor Mention
for frame, _ in detected[3:]:
category_mapping[frame] = "Minor Mention"
# For frames not detected, assign Not Applicable
for frame in frame_categories.keys():
if frame not in category_mapping:
category_mapping[frame] = "Not Applicable"
return category_mapping
def format_frame_categories_table(mapping):
"""
Returns a markdown-formatted table that displays each frame along with four columns:
Major Focus, Significant Focus, Minor Mention, and Not Applicable.
A tick (✓) is shown only in the column corresponding to the assigned category.
"""
header = "| Frame | Major Focus | Significant Focus | Minor Mention | Not Applicable |\n"
header += "| --- | --- | --- | --- | --- |\n"
rows = ""
tick = "✓"
for frame, category in mapping.items():
major = tick if category == "Major Focus" else ""
significant = tick if category == "Significant Focus" else ""
minor = tick if category == "Minor Mention" else ""
not_applicable = tick if category == "Not Applicable" else ""
rows += f"| {frame} | {major} | {significant} | {minor} | {not_applicable} |\n"
return header + rows
# -------------------------------------------------------------------
# Existing functions for file processing
# -------------------------------------------------------------------
# Extract captions from DOCX
def extract_captions_from_docx(docx_file):
doc = Document(docx_file)
captions = {}
current_post = None
for para in doc.paragraphs:
text = para.text.strip()
if re.match(r"Post \d+", text, re.IGNORECASE):
current_post = text
captions[current_post] = []
elif current_post:
captions[current_post].append(text)
return {post: " ".join(lines) for post, lines in captions.items() if lines}
# Extract metadata from Excel file
def extract_metadata_from_excel(excel_file):
try:
df = pd.read_excel(excel_file)
extracted_data = df.to_dict(orient="records")
return extracted_data
except Exception as e:
logging.error(f"Error processing Excel file: {e}")
return []
# Merge metadata with generated analysis
def merge_metadata_with_generated_data(generated_data, excel_metadata):
for post_data in excel_metadata:
post_number = f"Post {post_data.get('Post Number', len(generated_data) + 1)}"
if post_number in generated_data:
generated_data[post_number].update(post_data)
else:
generated_data[post_number] = post_data
return generated_data
def add_frames_table(doc, mapping):
"""
Adds a well-formatted table for the frames mapping into the given Document.
The table has 5 columns with headers: Frame, Major Focus, Significant Focus,
Minor Mention, and Not Applicable.
"""
# Create a table with 1 header row and 5 columns.
table = doc.add_table(rows=1, cols=5)
table.style = "Table Grid"
# Set header cells with bold, centered text.
headers = ["Frame", "Major Focus", "Significant Focus", "Minor Mention", "Not Applicable"]
hdr_cells = table.rows[0].cells
for idx, header in enumerate(headers):
hdr_cells[idx].text = header
for paragraph in hdr_cells[idx].paragraphs:
paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER
for run in paragraph.runs:
run.font.bold = True
run.font.size = Pt(11)
tick = "✓"
# Add a row for each frame.
for frame, category in mapping.items():
row_cells = table.add_row().cells
row_cells[0].text = frame
row_cells[1].text = tick if category == "Major Focus" else ""
row_cells[2].text = tick if category == "Significant Focus" else ""
row_cells[3].text = tick if category == "Minor Mention" else ""
row_cells[4].text = tick if category == "Not Applicable" else ""
# Center-align cells (except the first one, which is left-aligned).
for idx, cell in enumerate(row_cells):
for paragraph in cell.paragraphs:
if idx == 0:
paragraph.alignment = WD_ALIGN_PARAGRAPH.LEFT
else:
paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER
for run in paragraph.runs:
run.font.size = Pt(11)
# Optionally, set fixed column widths.
col_widths = [Inches(2), Inches(1), Inches(1), Inches(1), Inches(1)]
for row in table.rows:
for idx, cell in enumerate(row.cells):
cell.width = col_widths[idx]
return table
def create_docx_from_data(extracted_data):
doc = Document()
for post_number, data in extracted_data.items():
doc.add_heading(post_number, level=1)
ordered_keys = [
"Post Number", "Date of Post", "Media Type", "Number of Pictures",
"Number of Videos", "Number of Audios", "Likes", "Comments", "Tagged Audience",
"Full Caption", "Language", "Tone", "Hashtags"
]
for key in ordered_keys:
value = data.get(key, "N/A")
if key in ["Tone", "Hashtags"]:
value = ", ".join(value) if isinstance(value, list) else value
para = doc.add_paragraph(f"{key}: {value}")
para.style.font.size = Pt(11)
# If a FramesMapping exists, add a proper table.
if "FramesMapping" in data:
doc.add_paragraph("Frames:")
add_frames_table(doc, data["FramesMapping"])
else:
# Fallback: add plain text.
doc.add_paragraph(f"Frames: {data.get('Frames', 'N/A')}")
doc.add_paragraph("")
return doc
# -------------------------------------------------------------------
# Streamlit App UI
# -------------------------------------------------------------------
st.title("AI-Powered Coding Sheet Generator")
st.write("Enter text or upload a DOCX/Excel file for analysis:")
input_text = st.text_area("Input Text", height=200)
uploaded_docx = st.file_uploader("Upload a DOCX file", type=["docx"])
uploaded_excel = st.file_uploader("Upload an Excel file", type=["xlsx"])
output_data = {}
if input_text:
# Process manual input text
frame_mapping = get_frame_category_mapping(input_text)
frames_table = format_frame_categories_table(frame_mapping)
output_data["Manual Input"] = {
"Full Caption": input_text,
"Language": detect_language(input_text),
"Tone": extract_tone(input_text),
"Hashtags": extract_hashtags(input_text),
"Frames": frames_table, # Markdown table displaying frame categories
}
if uploaded_docx:
captions = extract_captions_from_docx(uploaded_docx)
for caption, text in captions.items():
frame_mapping = get_frame_category_mapping(text)
frames_table = format_frame_categories_table(frame_mapping)
output_data[caption] = {
"Full Caption": text,
"Language": detect_language(text),
"Tone": extract_tone(text),
"Hashtags": extract_hashtags(text),
"Frames": frames_table,
}
if uploaded_excel:
excel_metadata = extract_metadata_from_excel(uploaded_excel)
output_data = merge_metadata_with_generated_data(output_data, excel_metadata)
# Display results in collapsible sections
if output_data:
for post_number, data in output_data.items():
with st.expander(post_number):
for key, value in data.items():
if key == "Frames":
st.markdown(f"**{key}:**\n{value}")
else:
st.write(f"**{key}:** {value}")
# Generate DOCX output for download
if output_data:
docx_output = create_docx_from_data(output_data)
docx_io = io.BytesIO()
docx_output.save(docx_io)
docx_io.seek(0)
st.download_button("Download Merged Analysis as DOCX", data=docx_io, file_name="coding_sheet.docx")