File size: 12,869 Bytes
13ab744 0d3d327 f44d7de 706fc89 34d7c10 23eb166 706fc89 13ab744 609d4a9 34d7c10 0d3d327 34d7c10 c1221c4 0d3d327 34d7c10 0d3d327 34d7c10 0d3d327 706fc89 34d7c10 706fc89 da716d7 3b8e826 bba1b37 dac6f4a bba1b37 706fc89 bba1b37 706fc89 34d7c10 706fc89 bba1b37 773ca30 34d7c10 bba1b37 34d7c10 3b8e826 bba1b37 3b8e826 773ca30 bba1b37 609d4a9 bba1b37 08ecbc9 bba1b37 08ecbc9 bba1b37 08ecbc9 bba1b37 706fc89 609d4a9 706fc89 609d4a9 706fc89 da716d7 5893c88 da716d7 bba1b37 da716d7 5893c88 bba1b37 248922c bba1b37 08ecbc9 248922c 08ecbc9 248922c 08ecbc9 bba1b37 2244f52 dc1177c bba1b37 706fc89 d4724ab da716d7 f44d7de 706fc89 da716d7 bba1b37 da716d7 bba1b37 da716d7 bba1b37 da716d7 bba1b37 da716d7 bba1b37 da716d7 5893c88 da716d7 5893c88 bba1b37 da716d7 bba1b37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import os
import pandas as pd
import streamlit as st
import re
import logging
import nltk
from docx import Document
from docx.enum.text import WD_ALIGN_PARAGRAPH
from docx.shared import Pt
import io
from langdetect import detect
from collections import Counter
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from transformers import pipeline
# Load environment variables
load_dotenv()
# Check if Groq API key is available
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
logging.error("Missing Groq API key. Please set the GROQ_API_KEY environment variable.")
st.error("API key is missing. Please provide a valid API key.")
# Initialize logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Initialize LLM (Groq API)
llm = ChatGroq(temperature=0.5, groq_api_key=GROQ_API_KEY, model_name="llama3-8b-8192")
# Download required NLTK resources
nltk.download("punkt")
# Tone categories for fallback method
tone_categories = {
"Emotional": ["urgent", "violence", "disappearances", "forced", "killing", "crisis", "concern"],
"Harsh": ["corrupt", "oppression", "failure", "repression", "exploit", "unjust", "authoritarian"],
"Somber": ["tragedy", "loss", "pain", "sorrow", "mourning", "grief", "devastation"],
"Motivational": ["rise", "resist", "mobilize", "inspire", "courage", "change", "determination"],
"Informative": ["announcement", "event", "scheduled", "update", "details", "protest", "statement"],
"Positive": ["progress", "unity", "hope", "victory", "together", "solidarity", "uplifting"],
"Angry": ["rage", "injustice", "fury", "resentment", "outrage", "betrayal"],
"Fearful": ["threat", "danger", "terror", "panic", "risk", "warning"],
"Sarcastic": ["brilliant", "great job", "amazing", "what a surprise", "well done", "as expected"],
"Hopeful": ["optimism", "better future", "faith", "confidence", "looking forward"]
}
# Frame categories for fallback method
frame_categories = {
"Human Rights & Justice": ["rights", "law", "justice", "legal", "humanitarian"],
"Political & State Accountability": ["government", "policy", "state", "corruption", "accountability"],
"Gender & Patriarchy": ["gender", "women", "violence", "patriarchy", "equality"],
"Religious Freedom & Persecution": ["religion", "persecution", "minorities", "intolerance", "faith"],
"Grassroots Mobilization": ["activism", "community", "movement", "local", "mobilization"],
"Environmental Crisis & Activism": ["climate", "deforestation", "water", "pollution", "sustainability"],
"Anti-Extremism & Anti-Violence": ["extremism", "violence", "hate speech", "radicalism", "mob attack"],
"Social Inequality & Economic Disparities": ["class privilege", "labor rights", "economic", "discrimination"],
"Activism & Advocacy": ["justice", "rights", "demand", "protest", "march", "campaign", "freedom of speech"],
"Systemic Oppression": ["discrimination", "oppression", "minorities", "marginalized", "exclusion"],
"Intersectionality": ["intersecting", "women", "minorities", "struggles", "multiple oppression"],
"Call to Action": ["join us", "sign petition", "take action", "mobilize", "support movement"],
"Empowerment & Resistance": ["empower", "resist", "challenge", "fight for", "stand up"],
"Climate Justice": ["environment", "climate change", "sustainability", "biodiversity", "pollution"],
"Human Rights Advocacy": ["human rights", "violations", "honor killing", "workplace discrimination", "law reform"]
}
# Detect language
def detect_language(text):
try:
return detect(text)
except Exception as e:
logging.error(f"Error detecting language: {e}")
return "unknown"
# Extract tone using Groq API (or fallback method)
def extract_tone(text):
try:
response = llm.chat([{"role": "system", "content": "Analyze the tone of the following text and provide descriptive tone labels."},
{"role": "user", "content": text}])
return response["choices"][0]["message"]["content"].split(", ")
except Exception as e:
logging.error(f"Groq API error: {e}")
return extract_tone_fallback(text)
# Fallback method for tone extraction
def extract_tone_fallback(text):
detected_tones = set()
text_lower = text.lower()
for category, keywords in tone_categories.items():
if any(word in text_lower for word in keywords):
detected_tones.add(category)
return list(detected_tones) if detected_tones else ["Neutral"]
# Extract hashtags
def extract_hashtags(text):
return re.findall(r"#\w+", text)
# -------------------------------------------------------------------
# New functions for frame categorization and display
# -------------------------------------------------------------------
def get_frame_category_mapping(text):
"""
Returns a mapping of every frame (from frame_categories) to one of the four categories.
Detected frames are assigned a focus level based on keyword frequency:
- Top detected: "Major Focus"
- Next up to two: "Significant Focus"
- Remaining detected: "Minor Mention"
Frames not detected get "Not Applicable".
"""
text_lower = text.lower()
# Calculate frequency for each frame
frame_freq = {}
for frame, keywords in frame_categories.items():
freq = sum(1 for word in keywords if word in text_lower)
frame_freq[frame] = freq
# Identify detected frames (frequency > 0) and sort descending
detected = [(frame, freq) for frame, freq in frame_freq.items() if freq > 0]
detected.sort(key=lambda x: x[1], reverse=True)
category_mapping = {}
if detected:
# Highest frequency frame as Major Focus
category_mapping[detected[0][0]] = "Major Focus"
# Next up to two frames as Significant Focus
for frame, _ in detected[1:3]:
category_mapping[frame] = "Significant Focus"
# Remaining detected frames as Minor Mention
for frame, _ in detected[3:]:
category_mapping[frame] = "Minor Mention"
# For frames not detected, assign Not Applicable
for frame in frame_categories.keys():
if frame not in category_mapping:
category_mapping[frame] = "Not Applicable"
return category_mapping
def format_frame_categories_table(mapping):
"""
Returns a markdown-formatted table displaying each frame with columns:
Major Focus, Significant Focus, Minor Mention, and Not Applicable.
A tick (✓) marks the assigned category.
"""
header = "| Frame | Major Focus | Significant Focus | Minor Mention | Not Applicable |\n"
header += "| --- | --- | --- | --- | --- |\n"
tick = "✓"
rows = ""
for frame, category in mapping.items():
major = tick if category == "Major Focus" else ""
significant = tick if category == "Significant Focus" else ""
minor = tick if category == "Minor Mention" else ""
not_applicable = tick if category == "Not Applicable" else ""
rows += f"| {frame} | {major} | {significant} | {minor} | {not_applicable} |\n"
return header + rows
# -------------------------------------------------------------------
# Existing functions for file processing
# -------------------------------------------------------------------
def extract_captions_from_docx(docx_file):
doc = Document(docx_file)
captions = {}
current_post = None
for para in doc.paragraphs:
text = para.text.strip()
if re.match(r"Post \d+", text, re.IGNORECASE):
current_post = text
captions[current_post] = []
elif current_post:
captions[current_post].append(text)
return {post: " ".join(lines) for post, lines in captions.items() if lines}
def extract_metadata_from_excel(excel_file):
try:
df = pd.read_excel(excel_file)
extracted_data = df.to_dict(orient="records")
return extracted_data
except Exception as e:
logging.error(f"Error processing Excel file: {e}")
return []
def merge_metadata_with_generated_data(generated_data, excel_metadata):
for post_data in excel_metadata:
post_number = f"Post {post_data.get('Post Number', len(generated_data) + 1)}"
if post_number in generated_data:
generated_data[post_number].update(post_data)
else:
generated_data[post_number] = post_data
return generated_data
def create_docx_from_data(extracted_data):
doc = Document()
for post_number, data in extracted_data.items():
doc.add_heading(post_number, level=1)
ordered_keys = [
"Post Number", "Date of Post", "Media Type", "Number of Pictures",
"Number of Videos", "Number of Audios", "Likes", "Comments", "Tagged Audience",
"Full Caption", "Language", "Tone", "Hashtags"
]
for key in ordered_keys:
value = data.get(key, "N/A")
if key in ["Tone", "Hashtags"]:
value = ", ".join(value) if isinstance(value, list) else value
para = doc.add_paragraph()
run = para.add_run(f"**{key}:** {value}")
run.font.size = Pt(11)
# Add a proper table for Frames if a mapping is available.
if "FramesMapping" in data:
doc.add_paragraph("Frames:")
mapping = data["FramesMapping"]
table = doc.add_table(rows=1, cols=5)
table.style = "Light List Accent 1"
hdr_cells = table.rows[0].cells
hdr_cells[0].text = "Frame"
hdr_cells[1].text = "Major Focus"
hdr_cells[2].text = "Significant Focus"
hdr_cells[3].text = "Minor Mention"
hdr_cells[4].text = "Not Applicable"
tick = "✓"
for frame, category in mapping.items():
row_cells = table.add_row().cells
row_cells[0].text = frame
row_cells[1].text = tick if category == "Major Focus" else ""
row_cells[2].text = tick if category == "Significant Focus" else ""
row_cells[3].text = tick if category == "Minor Mention" else ""
row_cells[4].text = tick if category == "Not Applicable" else ""
else:
value = data.get("Frames", "N/A")
doc.add_paragraph(f"**Frames:** {value}")
doc.add_paragraph("\n")
return doc
# -------------------------------------------------------------------
# Streamlit App UI
# -------------------------------------------------------------------
st.title("AI-Powered Coding Sheet Generator")
st.write("Enter text or upload a DOCX/Excel file for analysis:")
input_text = st.text_area("Input Text", height=200)
uploaded_docx = st.file_uploader("Upload a DOCX file", type=["docx"])
uploaded_excel = st.file_uploader("Upload an Excel file", type=["xlsx"])
output_data = {}
if input_text:
# Process manual input text
frame_mapping = get_frame_category_mapping(input_text)
frames_table = format_frame_categories_table(frame_mapping)
output_data["Manual Input"] = {
"Full Caption": input_text,
"Language": detect_language(input_text),
"Tone": extract_tone(input_text),
"Hashtags": extract_hashtags(input_text),
"Frames": frames_table, # Markdown table displaying frame categories
}
if uploaded_docx:
captions = extract_captions_from_docx(uploaded_docx)
for caption, text in captions.items():
frame_mapping = get_frame_category_mapping(text)
frames_table = format_frame_categories_table(frame_mapping)
output_data[caption] = {
"Full Caption": text,
"Language": detect_language(text),
"Tone": extract_tone(text),
"Hashtags": extract_hashtags(text),
"Frames": frames_table,
}
if uploaded_excel:
excel_metadata = extract_metadata_from_excel(uploaded_excel)
output_data = merge_metadata_with_generated_data(output_data, excel_metadata)
# Display results in collapsible sections
if output_data:
for post_number, data in output_data.items():
with st.expander(post_number):
for key, value in data.items():
if key == "Frames":
st.markdown(f"**{key}:**\n{value}")
else:
st.write(f"**{key}:** {value}")
# Generate DOCX output for download
if output_data:
docx_output = create_docx_from_data(output_data)
docx_io = io.BytesIO()
docx_output.save(docx_io)
docx_io.seek(0)
st.download_button("Download Merged Analysis as DOCX", data=docx_io, file_name="coding_sheet.docx")
|