Update app.py
Browse files
app.py
CHANGED
@@ -47,7 +47,7 @@ tone_categories = {
|
|
47 |
"Hopeful": ["optimism", "better future", "faith", "confidence", "looking forward"]
|
48 |
}
|
49 |
|
50 |
-
# Frame categories
|
51 |
frame_categories = {
|
52 |
"Human Rights & Justice": ["rights", "law", "justice", "legal", "humanitarian"],
|
53 |
"Political & State Accountability": ["government", "policy", "state", "corruption", "accountability"],
|
@@ -57,6 +57,13 @@ frame_categories = {
|
|
57 |
"Environmental Crisis & Activism": ["climate", "deforestation", "water", "pollution", "sustainability"],
|
58 |
"Anti-Extremism & Anti-Violence": ["extremism", "violence", "hate speech", "radicalism", "mob attack"],
|
59 |
"Social Inequality & Economic Disparities": ["class privilege", "labor rights", "economic", "discrimination"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
}
|
61 |
|
62 |
# Detect language
|
@@ -100,7 +107,7 @@ def categorize_frames(frame_list):
|
|
100 |
for i, (frame, count) in enumerate(sorted_frames):
|
101 |
if i == 0: # Highest frequency frame
|
102 |
categorized_frames["Major Focus"].append(frame)
|
103 |
-
elif i <
|
104 |
categorized_frames["Significant Focus"].append(frame)
|
105 |
else:
|
106 |
categorized_frames["Minor Mention"].append(frame)
|
|
|
47 |
"Hopeful": ["optimism", "better future", "faith", "confidence", "looking forward"]
|
48 |
}
|
49 |
|
50 |
+
# Frame categories for fallback method
|
51 |
frame_categories = {
|
52 |
"Human Rights & Justice": ["rights", "law", "justice", "legal", "humanitarian"],
|
53 |
"Political & State Accountability": ["government", "policy", "state", "corruption", "accountability"],
|
|
|
57 |
"Environmental Crisis & Activism": ["climate", "deforestation", "water", "pollution", "sustainability"],
|
58 |
"Anti-Extremism & Anti-Violence": ["extremism", "violence", "hate speech", "radicalism", "mob attack"],
|
59 |
"Social Inequality & Economic Disparities": ["class privilege", "labor rights", "economic", "discrimination"],
|
60 |
+
"Activism & Advocacy": ["justice", "rights", "demand", "protest", "march", "campaign", "freedom of speech"],
|
61 |
+
"Systemic Oppression": ["discrimination", "oppression", "minorities", "marginalized", "exclusion"],
|
62 |
+
"Intersectionality": ["intersecting", "women", "minorities", "struggles", "multiple oppression"],
|
63 |
+
"Call to Action": ["join us", "sign petition", "take action", "mobilize", "support movement"],
|
64 |
+
"Empowerment & Resistance": ["empower", "resist", "challenge", "fight for", "stand up"],
|
65 |
+
"Climate Justice": ["environment", "climate change", "sustainability", "biodiversity", "pollution"],
|
66 |
+
"Human Rights Advocacy": ["human rights", "violations", "honor killing", "workplace discrimination", "law reform"]
|
67 |
}
|
68 |
|
69 |
# Detect language
|
|
|
107 |
for i, (frame, count) in enumerate(sorted_frames):
|
108 |
if i == 0: # Highest frequency frame
|
109 |
categorized_frames["Major Focus"].append(frame)
|
110 |
+
elif i < 3: # Top 3 most mentioned frames
|
111 |
categorized_frames["Significant Focus"].append(frame)
|
112 |
else:
|
113 |
categorized_frames["Minor Mention"].append(frame)
|