File size: 7,675 Bytes
0d3d327 f44d7de 706fc89 34d7c10 23eb166 706fc89 609d4a9 34d7c10 0d3d327 34d7c10 c1221c4 0d3d327 34d7c10 0d3d327 34d7c10 0d3d327 706fc89 34d7c10 706fc89 0d3d327 706fc89 34d7c10 706fc89 0d3d327 773ca30 34d7c10 cf0ede7 34d7c10 0d3d327 773ca30 609d4a9 0d3d327 34d7c10 0d3d327 1be98f5 0d3d327 34d7c10 0d3d327 34d7c10 0d3d327 34d7c10 0d3d327 34d7c10 609d4a9 706fc89 609d4a9 706fc89 609d4a9 706fc89 0d3d327 9e0b8b3 2bc09f4 40be765 0d3d327 40be765 2bc09f4 40be765 9e0b8b3 0d3d327 9e0b8b3 40be765 0d3d327 9e0b8b3 0d3d327 40be765 cf0ede7 40be765 0d3d327 40be765 2bc09f4 40be765 34d7c10 706fc89 f44d7de 706fc89 f44d7de 706fc89 40be765 0d3d327 40be765 f44d7de 40be765 0d3d327 40be765 f44d7de 0d3d327 40be765 bd7a5fe 40be765 1be98f5 40be765 0d3d327 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
import pandas as pd
import streamlit as st
import re
import logging
import nltk
from docx import Document
import io
from langdetect import detect
from collections import Counter
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from transformers import pipeline
# Load environment variables
load_dotenv()
# Check if Groq API key is available
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
logging.error("Missing Groq API key. Please set the GROQ_API_KEY environment variable.")
st.error("API key is missing. Please provide a valid API key.")
# Initialize logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Initialize LLM (Groq API)
llm = ChatGroq(temperature=0.5, groq_api_key=GROQ_API_KEY, model_name="llama3-8b-8192")
# Download required NLTK resources
nltk.download("punkt")
# Frame categories with keywords
frame_categories = {
"Human Rights & Justice": ["rights", "law", "justice", "legal", "humanitarian"],
"Political & State Accountability": ["government", "policy", "state", "corruption", "accountability"],
"Gender & Patriarchy": ["gender", "women", "violence", "patriarchy", "equality"],
"Religious Freedom & Persecution": ["religion", "persecution", "minorities", "intolerance", "faith"],
"Grassroots Mobilization": ["activism", "community", "movement", "local", "mobilization"],
"Environmental Crisis & Activism": ["climate", "deforestation", "water", "pollution", "sustainability"],
"Anti-Extremism & Anti-Violence": ["extremism", "violence", "hate speech", "radicalism", "mob attack"],
"Social Inequality & Economic Disparities": ["class privilege", "labor rights", "economic", "discrimination"],
}
# Detect language
def detect_language(text):
try:
return detect(text)
except Exception as e:
logging.error(f"Error detecting language: {e}")
return "unknown"
# Extract tone using Groq API
def extract_tone(text):
try:
response = llm.chat([{"role": "system", "content": "Analyze the tone of the following text and provide descriptive tone labels."},
{"role": "user", "content": text}])
return response["choices"][0]["message"]["content"].split(", ")
except Exception as e:
logging.error(f"Groq API error: {e}")
return ["Neutral"]
# Extract hashtags
def extract_hashtags(text):
return re.findall(r"#\w+", text)
# Categorize frames into Major, Significant, and Minor based on frequency
def categorize_frames(frame_list):
frame_counter = Counter(frame_list)
categorized_frames = {"Major Focus": [], "Significant Focus": [], "Minor Mention": []}
sorted_frames = sorted(frame_counter.items(), key=lambda x: x[1], reverse=True)
for i, (frame, count) in enumerate(sorted_frames):
if i == 0: # Highest frequency frame
categorized_frames["Major Focus"].append(frame)
elif i < 3: # Top 3 most mentioned frames
categorized_frames["Significant Focus"].append(frame)
else:
categorized_frames["Minor Mention"].append(frame)
return categorized_frames
# Extract frames using keyword matching and categorize
def extract_frames_fallback(text):
detected_frames = []
text_lower = text.lower()
for category, keywords in frame_categories.items():
keyword_count = sum(1 for word in keywords if word in text_lower)
if keyword_count > 0:
detected_frames.append(category)
return categorize_frames(detected_frames)
# Extract captions from DOCX
def extract_captions_from_docx(docx_file):
doc = Document(docx_file)
captions = {}
current_post = None
for para in doc.paragraphs:
text = para.text.strip()
if re.match(r"Post \d+", text, re.IGNORECASE):
current_post = text
captions[current_post] = []
elif current_post:
captions[current_post].append(text)
return {post: " ".join(lines) for post, lines in captions.items() if lines}
# Extract metadata from Excel file
def extract_metadata_from_excel(excel_file):
try:
df = pd.read_excel(excel_file)
required_columns = ["Date", "Media Type", "Number of Pictures", "Number of Videos", "Number of Audios", "Likes", "Comments", "Tagged Audience"]
if not all(col in df.columns for col in required_columns):
st.error("Excel file is missing required columns.")
return []
extracted_data = []
for index, row in df.iterrows():
post_data = {
"Post Number": f"Post {index + 1}",
"Date of Post": row.get("Date", "N/A"),
"Media Type": row.get("Media Type", "N/A"),
"Number of Pictures": row.get("Number of Pictures", 0),
"Number of Videos": row.get("Number of Videos", 0),
"Number of Audios": row.get("Number of Audios", 0),
"Likes": row.get("Likes", 0),
"Comments": row.get("Comments", 0),
"Tagged Audience": row.get("Tagged Audience", "No"),
}
extracted_data.append(post_data)
return extracted_data
except Exception as e:
logging.error(f"Error processing Excel file: {e}")
return []
# Merge metadata with generated analysis
def merge_metadata_with_generated_data(generated_data, excel_metadata):
for post_data in excel_metadata:
post_number = post_data["Post Number"]
if post_number in generated_data:
generated_data[post_number].update(post_data)
else:
generated_data[post_number] = post_data # Preserve metadata even if no text caption
return generated_data
# Create DOCX file from extracted data
def create_docx_from_data(extracted_data):
doc = Document()
for post_number, data in extracted_data.items():
doc.add_heading(post_number, level=1)
for key, value in data.items():
doc.add_paragraph(f"**{key}:** {value}")
doc.add_paragraph("\n")
return doc
# Streamlit app
st.title("AI-Powered Activism Message Analyzer")
st.write("Enter text or upload a DOCX/Excel file for analysis:")
input_text = st.text_area("Input Text", height=200)
uploaded_docx = st.file_uploader("Upload a DOCX file", type=["docx"])
uploaded_excel = st.file_uploader("Upload an Excel file", type=["xlsx"])
output_data = {}
if input_text:
output_data["Manual Input"] = {
"Full Caption": input_text,
"Language": detect_language(input_text),
"Tone": extract_tone(input_text),
"Hashtags": extract_hashtags(input_text),
"Frames": extract_frames_fallback(input_text),
}
if uploaded_docx:
captions = extract_captions_from_docx(uploaded_docx)
for caption, text in captions.items():
output_data[caption] = {
"Full Caption": text,
"Language": detect_language(text),
"Tone": extract_tone(text),
"Hashtags": extract_hashtags(text),
"Frames": extract_frames_fallback(text),
}
if uploaded_excel:
excel_metadata = extract_metadata_from_excel(uploaded_excel)
output_data = merge_metadata_with_generated_data(output_data, excel_metadata)
if output_data:
docx_output = create_docx_from_data(output_data)
docx_io = io.BytesIO()
docx_output.save(docx_io)
docx_io.seek(0)
st.download_button("Download Merged Analysis as DOCX", data=docx_io, file_name="merged_analysis.docx")
|