File size: 1,326 Bytes
e4c6a63
 
 
 
 
2d79dbb
e4c6a63
2d79dbb
 
 
 
 
e4c6a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from peft import PeftModel
import gradio as gr
from huggingface_hub import login
import os

# Retrieve the token from the environment variable and log in
hf_token = os.environ.get("HF_TOKEN")
if hf_token is None:
    raise ValueError("HF_TOKEN environment variable not found. Please check your Space secrets.")
login(token=hf_token)

# Define model paths
base_model_name = "meta-llama/Llama-3.2-3B-Instruct"
lora_adapter_path = "agilan1102/eysflow_adapters"

# Load tokenizer and models
tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_auth_token=True)
base_model = AutoModelForCausalLM.from_pretrained(
    base_model_name,
    device_map="auto",
    use_auth_token=True
)
model_with_adapter = PeftModel.from_pretrained(base_model, lora_adapter_path, use_auth_token=True)

def generate_text_adapter(prompt):
    inputs = tokenizer(prompt, return_tensors="pt").to(model_with_adapter.device)
    outputs = model_with_adapter.generate(**inputs, max_new_tokens=500)
    result = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return result

# Create Gradio interface
demo = gr.Interface(
    fn=generate_text_adapter,
    inputs="text",
    outputs="text",
    title="My Finetuned LLM API"
)

# Launch the interface
demo.launch()