Jofthomas commited on
Commit
298104a
·
verified ·
1 Parent(s): f8f9c82

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +314 -0
app.py ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+ from fastapi import FastAPI, HTTPException, Body
4
+ from pydantic import BaseModel, Field
5
+ from typing import List, Dict, Any
6
+ from datasets import load_dataset, Dataset, DatasetDict
7
+ from huggingface_hub import HfApi, hf_hub_download
8
+ from datetime import datetime, timezone
9
+ import logging
10
+ import uvicorn # To run the app
11
+
12
+ # --- Configuration ---
13
+ HF_DATASET_ID = "agents-course/unit4-students-scores"
14
+ # Ensure you have write access to this dataset repository on Hugging Face
15
+ # and are logged in via `huggingface-cli login` or have HF_TOKEN env var set.
16
+
17
+ # --- Logging Setup ---
18
+ logging.basicConfig(level=logging.INFO)
19
+ logger = logging.getLogger(__name__)
20
+
21
+ # --- Load and Prepare Filtered Questions ---
22
+ # Placeholder: Replace this with your actual filtered data loading logic
23
+ # This data MUST contain 'task_id', 'Question', and 'Final answer'
24
+ # Example structure:
25
+ # filtered_data = [
26
+ # {'task_id': 'e1fc63a2-da7a-432f-be78-7c4a95598703', 'Question': 'If Eliud Kipchoge...', 'Final answer': '17', ... other keys ...},
27
+ # {'task_id': 'example_pass', 'Question': 'Another question', 'Final answer': '42', ... other keys ...},
28
+ # # ... more filtered questions
29
+ # ]
30
+
31
+ # Let's simulate loading your filtered data (replace with your actual loading)
32
+ # Assuming you have the 'filtered_questions' list from the previous step's code
33
+ # Example data if you don't have it handy:
34
+ filtered_data = [
35
+ {'task_id': 'q1', 'Question': 'What is 2+2?', 'Level': '1', 'Final answer': '4', 'Annotator Metadata': {'Number of steps': '1', 'Number of tools': '1'}},
36
+ {'task_id': 'q2', 'Question': 'Capital of France?', 'Level': '1', 'Final answer': 'Paris', 'Annotator Metadata': {'Number of steps': '1', 'Number of tools': '1'}},
37
+ {'task_id': 'q3', 'Question': '10 / 2 ?', 'Level': '1', 'Final answer': '5', 'Annotator Metadata': {'Number of steps': '1', 'Number of tools': '1'}}
38
+ ]
39
+ # filtered_data = filtered_questions # Uncomment this if you have the list from previous step
40
+
41
+ # Prepare data structures for the API
42
+ questions_for_api: List[Dict[str, str]] = []
43
+ ground_truth_answers: Dict[str, str] = {}
44
+
45
+ for item in filtered_data:
46
+ task_id = item.get('task_id')
47
+ question_text = item.get('Question')
48
+ final_answer = item.get('Final answer')
49
+
50
+ if task_id and question_text and final_answer is not None:
51
+ questions_for_api.append({
52
+ "task_id": str(task_id), # Ensure ID is string
53
+ "question": question_text
54
+ })
55
+ ground_truth_answers[str(task_id)] = str(final_answer) # Ensure answer is string
56
+ else:
57
+ logger.warning(f"Skipping item due to missing fields: {item}")
58
+
59
+ logger.info(f"Loaded {len(questions_for_api)} questions for the API.")
60
+ if not questions_for_api:
61
+ logger.error("No valid questions loaded. API will not function correctly.")
62
+ # You might want to exit or raise an error here depending on requirements
63
+
64
+ # --- Pydantic Models for Data Validation ---
65
+ class Question(BaseModel):
66
+ task_id: str
67
+ question: str
68
+
69
+ class AnswerItem(BaseModel):
70
+ task_id: str
71
+ submitted_answer: str = Field(..., description="The agent's answer for the task_id")
72
+
73
+ class Submission(BaseModel):
74
+ username: str = Field(..., description="Hugging Face username", min_length=1)
75
+ agent_code: str = Field(..., description="The Python class code for the agent", min_length=10) # Basic check
76
+ answers: List[AnswerItem] = Field(..., description="List of answers submitted by the agent")
77
+
78
+ class ScoreResponse(BaseModel):
79
+ username: str
80
+ score: float
81
+ correct_count: int
82
+ total_attempted: int
83
+ message: str
84
+ timestamp: str
85
+
86
+ class ErrorResponse(BaseModel):
87
+ detail: str
88
+
89
+ # --- FastAPI Application ---
90
+ app = FastAPI(
91
+ title="Agent Evaluation API",
92
+ description="API to fetch questions and submit agent answers for scoring.",
93
+ )
94
+
95
+ # --- Helper Function to interact with HF Dataset ---
96
+ def update_huggingface_dataset(username: str, score: float):
97
+ """Loads the dataset, updates the score if higher, and pushes back."""
98
+ try:
99
+ # 1. Load the dataset
100
+ logger.info(f"Loading dataset '{HF_DATASET_ID}'...")
101
+ # Try loading, handle case where dataset might be empty or non-existent initially
102
+ try:
103
+ # Use hf_hub_download to check if the parquet file exists, avoiding full dataset load error if empty
104
+ # This assumes the dataset uses the default 'train' split and parquet format. Adjust if needed.
105
+ hf_hub_download(repo_id=HF_DATASET_ID, filename="data/train-00000-of-00001.parquet", repo_type="dataset")
106
+ ds = load_dataset(HF_DATASET_ID)
107
+ logger.info("Dataset loaded successfully.")
108
+ # Check if it has a 'train' split, common default
109
+ if "train" not in ds:
110
+ logger.warning(f"Dataset '{HF_DATASET_ID}' does not contain a 'train' split. Creating one.")
111
+ # Create an empty DataFrame with the correct schema if 'train' split is missing
112
+ df = pd.DataFrame({'username': pd.Series(dtype='str'),
113
+ 'score': pd.Series(dtype='float'),
114
+ 'timestamp': pd.Series(dtype='str')})
115
+ ds = DatasetDict({'train': Dataset.from_pandas(df)})
116
+ else:
117
+ # Convert the 'train' split to a pandas DataFrame for easier manipulation
118
+ df = ds['train'].to_pandas()
119
+
120
+ except Exception as load_error: # Catch broad exception for file not found or other loading issues
121
+ logger.warning(f"Could not load dataset '{HF_DATASET_ID}' or it might be empty/new ({load_error}). Creating structure.")
122
+ # Create an empty DataFrame with the correct schema
123
+ df = pd.DataFrame({'username': pd.Series(dtype='str'),
124
+ 'score': pd.Series(dtype='float'),
125
+ 'timestamp': pd.Series(dtype='str')})
126
+
127
+
128
+ # Ensure columns exist, add if they don't
129
+ for col, dtype in [('username', 'str'), ('score', 'float'), ('timestamp', 'str')]:
130
+ if col not in df.columns:
131
+ logger.warning(f"Column '{col}' not found in dataset. Adding it.")
132
+ df[col] = pd.Series(dtype=dtype)
133
+
134
+
135
+ # Convert score column to numeric, coercing errors
136
+ df['score'] = pd.to_numeric(df['score'], errors='coerce')
137
+
138
+
139
+ # 2. Find existing score for the user
140
+ existing_entries = df[df['username'] == username]
141
+ current_timestamp = datetime.now(timezone.utc).isoformat()
142
+ needs_update = False
143
+
144
+ if not existing_entries.empty:
145
+ # User exists, find their highest score
146
+ # Handle potential NaN scores from coercion or previous bad data
147
+ max_existing_score = existing_entries['score'].max()
148
+ if pd.isna(max_existing_score) or score > max_existing_score:
149
+ logger.info(f"New score {score} is higher than existing max {max_existing_score} for {username}. Updating.")
150
+ # Remove old entries for this user
151
+ df = df[df['username'] != username]
152
+ # Add new entry
153
+ new_entry = pd.DataFrame([{'username': username, 'score': score, 'timestamp': current_timestamp}])
154
+ df = pd.concat([df, new_entry], ignore_index=True)
155
+ needs_update = True
156
+ else:
157
+ logger.info(f"New score {score} is not higher than existing max {max_existing_score} for {username}. No update needed.")
158
+ else:
159
+ # User does not exist, add them
160
+ logger.info(f"User {username} not found. Adding new entry.")
161
+ new_entry = pd.DataFrame([{'username': username, 'score': score, 'timestamp': current_timestamp}])
162
+ df = pd.concat([df, new_entry], ignore_index=True)
163
+ needs_update = True
164
+
165
+ # 3. Push updated data back to Hugging Face Hub if changes were made
166
+ if needs_update:
167
+ logger.info(f"Pushing updated dataset to '{HF_DATASET_ID}'...")
168
+ # Convert potentially modified DataFrame back to a Dataset object
169
+ # Ensure the schema matches if columns were added/modified.
170
+ # Use 'train' split convention.
171
+ updated_ds = DatasetDict({'train': Dataset.from_pandas(df)})
172
+ updated_ds.push_to_hub(HF_DATASET_ID) # Token should be picked up from env or login
173
+ logger.info("Dataset push successful.")
174
+ return True
175
+ else:
176
+ return False # No update was pushed
177
+
178
+ except Exception as e:
179
+ logger.error(f"Error interacting with Hugging Face dataset '{HF_DATASET_ID}': {e}", exc_info=True)
180
+ # Re-raise the exception to be caught by the endpoint handler
181
+ raise HTTPException(status_code=500, detail=f"Failed to update Hugging Face dataset: {e}")
182
+
183
+
184
+ # --- API Endpoints ---
185
+
186
+ @app.get("/questions",
187
+ response_model=List[Question],
188
+ summary="Get Filtered Questions",
189
+ description="Returns a list of questions (task_id and question text only) for the agent evaluation.")
190
+ async def get_questions():
191
+ """
192
+ Provides the list of questions that agents should answer.
193
+ """
194
+ if not questions_for_api:
195
+ raise HTTPException(status_code=404, detail="No questions available.")
196
+ return questions_for_api
197
+
198
+
199
+ @app.post("/submit",
200
+ response_model=ScoreResponse,
201
+ summary="Submit Agent Answers",
202
+ description="Submit answers from an agent, calculate score, and update leaderboard on Hugging Face.",
203
+ responses={
204
+ 200: {"description": "Submission successful, score calculated."},
205
+ 400: {"model": ErrorResponse, "description": "Invalid input data."},
206
+ 404: {"model": ErrorResponse, "description": "Task ID not found."},
207
+ 500: {"model": ErrorResponse, "description": "Server error (e.g., failed to update dataset)."}
208
+ })
209
+ async def submit_answers(submission: Submission = Body(...)):
210
+ """
211
+ Receives agent submissions:
212
+ - Validates input.
213
+ - Checks presence of agent code (basic anti-cheat).
214
+ - Calculates score based on submitted answers vs ground truth.
215
+ - Updates the score on the Hugging Face dataset if it's a new high score for the user.
216
+ """
217
+ logger.info(f"Received submission from username: {submission.username}")
218
+
219
+ # Basic check for agent code presence
220
+ if not submission.agent_code or len(submission.agent_code.strip()) < 10:
221
+ logger.warning(f"Submission rejected for {submission.username}: Agent code missing or too short.")
222
+ raise HTTPException(status_code=400, detail="Agent code is required and must be sufficiently long.")
223
+
224
+ if not submission.answers:
225
+ logger.warning(f"Submission rejected for {submission.username}: No answers provided.")
226
+ raise HTTPException(status_code=400, detail="No answers provided in the submission.")
227
+
228
+
229
+ correct_count = 0
230
+ total_attempted = len(submission.answers)
231
+ processed_ids = set()
232
+
233
+ for answer_item in submission.answers:
234
+ task_id = str(answer_item.task_id) # Ensure string comparison
235
+ submitted = str(answer_item.submitted_answer) # Ensure string comparison
236
+
237
+ # Prevent duplicate task_id submissions in the same request
238
+ if task_id in processed_ids:
239
+ logger.warning(f"Duplicate task_id '{task_id}' in submission from {submission.username}. Skipping.")
240
+ total_attempted -= 1 # Adjust count as we skip it
241
+ continue
242
+ processed_ids.add(task_id)
243
+
244
+
245
+ # Check if task_id is valid
246
+ if task_id not in ground_truth_answers:
247
+ logger.warning(f"Task ID '{task_id}' submitted by {submission.username} not found in ground truth list.")
248
+ # Option 1: Reject the whole submission
249
+ # raise HTTPException(status_code=404, detail=f"Task ID '{task_id}' not found.")
250
+ # Option 2: Skip this answer and continue scoring others (chosen here)
251
+ total_attempted -= 1 # Don't count this attempt if the ID was invalid
252
+ continue
253
+
254
+
255
+ # Compare answers (case-insensitive, strip whitespace)
256
+ ground_truth = ground_truth_answers[task_id]
257
+ if submitted.strip().lower() == ground_truth.strip().lower():
258
+ correct_count += 1
259
+ logger.debug(f"Correct answer for {task_id} from {submission.username}")
260
+ else:
261
+ logger.debug(f"Incorrect answer for {task_id} from {submission.username}. Submitted: '{submitted}', Expected: '{ground_truth}'")
262
+
263
+
264
+ # Calculate score
265
+ if total_attempted == 0:
266
+ score = 0.0
267
+ message = "No valid answers submitted or processed."
268
+ logger.warning(f"No valid answers processed for {submission.username}.")
269
+ else:
270
+ score = round((correct_count / total_attempted) * 100, 2)
271
+ message = f"Score calculated successfully. {correct_count}/{total_attempted} correct."
272
+ logger.info(f"Score for {submission.username}: {score}% ({correct_count}/{total_attempted})")
273
+
274
+
275
+ # Update Hugging Face dataset
276
+ try:
277
+ updated = update_huggingface_dataset(submission.username, score)
278
+ if updated:
279
+ message += " High score updated on leaderboard."
280
+ logger.info(f"Leaderboard updated for {submission.username}.")
281
+ else:
282
+ message += " Score did not improve previous record, leaderboard not updated."
283
+ logger.info(f"Leaderboard not updated for {submission.username} as score was not higher.")
284
+
285
+ except HTTPException as http_exc:
286
+ # Propagate HTTPException from the helper function (e.g., 500 error)
287
+ raise http_exc
288
+ except Exception as e:
289
+ # Catch any other unexpected errors during HF update
290
+ logger.error(f"Unexpected error during dataset update for {submission.username}: {e}", exc_info=True)
291
+ raise HTTPException(status_code=500, detail="An unexpected error occurred while updating the leaderboard.")
292
+
293
+
294
+ return ScoreResponse(
295
+ username=submission.username,
296
+ score=score,
297
+ correct_count=correct_count,
298
+ total_attempted=total_attempted,
299
+ message=message,
300
+ timestamp=datetime.now(timezone.utc).isoformat()
301
+ )
302
+ # --- Run the application ---
303
+ # This part is mainly for local development without Docker.
304
+ # Docker uses the CMD instruction in the Dockerfile.
305
+ if __name__ == "__main__":
306
+ logger.info("Starting FastAPI server for local development...")
307
+ if not questions_for_api:
308
+ logger.error("EXITING: Cannot start server without loaded questions.")
309
+ else:
310
+ # Read port from environment variable for consistency, default to 8000 for local if not set
311
+ local_port = int(os.getenv("PORT", "8000"))
312
+ logger.info(f"Running Uvicorn locally on port: {local_port}")
313
+ # Note: host='127.0.0.1' is usually fine for local runs outside docker
314
+ uvicorn.run(app, host="127.0.0.1", port=local_port, log_level="info")