Spaces:
Running
Running
import os | |
import pandas as pd | |
from fastapi import FastAPI, HTTPException, Body | |
from pydantic import BaseModel, Field | |
from typing import List, Dict, Any | |
from datasets import load_dataset, Dataset, DatasetDict | |
from huggingface_hub import HfApi, hf_hub_download | |
from datetime import datetime, timezone | |
import logging | |
import uvicorn # To run the app | |
tool_threshold = 3 | |
step_threshold = 5 | |
# --- Configuration --- | |
HF_DATASET_ID = "agents-course/unit4-students-scores" | |
# Ensure you have write access to this dataset repository on Hugging Face | |
# and are logged in via `huggingface-cli login` or have HF_TOKEN env var set. | |
# Prepare data structures for the API | |
questions_for_api: List[Dict[str, str]] = [] | |
ground_truth_answers: Dict[str, str] = {} | |
# --- Logging Setup --- | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
filtered_dataset=None | |
def load_questions(): | |
global filtered_dataset | |
global questions_for_api | |
global ground_truth_answers | |
tempo_filtered=[] | |
dataset=load_dataset("gaia-benchmark/GAIA","2023_level1",trust_remote_code=True) | |
for question in dataset['validation']: | |
metadata = question.get('Annotator Metadata') # Use .get() for safety | |
if metadata: # Check if 'Annotator Metadata' exists | |
num_tools_str = metadata.get('Number of tools') | |
num_steps_str = metadata.get('Number of steps') | |
# Check if both numbers exist before trying to convert | |
if num_tools_str is not None and num_steps_str is not None: | |
try: | |
# Convert values to integers for comparison | |
num_tools = int(num_tools_str) | |
num_steps = int(num_steps_str) | |
# Apply the filter conditions | |
if num_tools < tool_threshold and num_steps < step_threshold: | |
print(f"MATCH FOUND (Task ID: {question.get('task_id', 'N/A')}) - Tools: {num_tools}, Steps: {num_steps}") | |
print(question) # Print the matching question dictionary | |
print("------------------------------------------------------------------") | |
tempo_filtered.append(question) # Add to the filtered list | |
# else: # Optional: Handle items that don't match the filter | |
# print(f"Skipping Task ID: {question.get('task_id', 'N/A')} - Tools: {num_tools}, Steps: {num_steps}") | |
except ValueError: | |
# Handle cases where 'Number of tools' or 'Number of steps' is not a valid integer | |
print(f"Skipping Task ID: {question.get('task_id', 'N/A')} - Could not convert tool/step count to integer.") | |
print("------------------------------------------------------------------") | |
filtered_dataset=tempo_filtered | |
print(filtered_dataset) | |
for item in filtered_dataset: | |
task_id = item.get('task_id') | |
question_text = item.get('Question') | |
final_answer = item.get('Final answer') | |
if task_id and question_text and final_answer is not None: | |
questions_for_api.append({ | |
"task_id": str(task_id), # Ensure ID is string | |
"question": question_text | |
}) | |
ground_truth_answers[str(task_id)] = str(final_answer) # Ensure answer is string | |
else: | |
logger.warning(f"Skipping item due to missing fields: {item}") | |
logger.info(f"Loaded {len(questions_for_api)} questions for the API.") | |
print(questions_for_api) | |
if not questions_for_api: | |
logger.error("No valid questions loaded. API will not function correctly.") | |
# You might want to exit or raise an error here depending on requirements | |
# --- Pydantic Models for Data Validation --- | |
class Question(BaseModel): | |
task_id: str | |
question: str | |
class AnswerItem(BaseModel): | |
task_id: str | |
submitted_answer: str = Field(..., description="The agent's answer for the task_id") | |
class Submission(BaseModel): | |
username: str = Field(..., description="Hugging Face username", min_length=1) | |
agent_code: str = Field(..., description="The Python class code for the agent", min_length=10) # Basic check | |
answers: List[AnswerItem] = Field(..., description="List of answers submitted by the agent") | |
class ScoreResponse(BaseModel): | |
username: str | |
score: float | |
correct_count: int | |
total_attempted: int | |
message: str | |
timestamp: str | |
class ErrorResponse(BaseModel): | |
detail: str | |
# --- FastAPI Application --- | |
app = FastAPI( | |
title="Agent Evaluation API", | |
description="API to fetch questions and submit agent answers for scoring.", | |
) | |
# --- Startup Event Handler --- | |
async def startup_event(): | |
""" | |
Loads the questions when the FastAPI application starts. | |
""" | |
logger.info("Application startup: Loading questions...") | |
load_questions() # Call your loading function here | |
if not questions_for_api: | |
logger.error("CRITICAL: No questions were loaded during startup. The /questions endpoint will fail.") | |
# Depending on requirements, you might want the app to fail startup | |
# raise RuntimeError("Failed to load mandatory question data.") | |
else: | |
logger.info(f"Successfully loaded {len(questions_for_api)} questions.") | |
# --- Helper Function to interact with HF Dataset --- | |
def update_huggingface_dataset(username: str, score: float): | |
"""Loads the dataset, updates the score if higher, and pushes back.""" | |
try: | |
# 1. Load the dataset | |
logger.info(f"Loading dataset '{HF_DATASET_ID}'...") | |
# Try loading, handle case where dataset might be empty or non-existent initially | |
try: | |
# Use hf_hub_download to check if the parquet file exists, avoiding full dataset load error if empty | |
# This assumes the dataset uses the default 'train' split and parquet format. Adjust if needed. | |
hf_hub_download(repo_id=HF_DATASET_ID, filename="data/train-00000-of-00001.parquet", repo_type="dataset") | |
ds = load_dataset(HF_DATASET_ID) | |
logger.info("Dataset loaded successfully.") | |
# Check if it has a 'train' split, common default | |
if "train" not in ds: | |
logger.warning(f"Dataset '{HF_DATASET_ID}' does not contain a 'train' split. Creating one.") | |
# Create an empty DataFrame with the correct schema if 'train' split is missing | |
df = pd.DataFrame({'username': pd.Series(dtype='str'), | |
'score': pd.Series(dtype='float'), | |
'timestamp': pd.Series(dtype='str')}) | |
ds = DatasetDict({'train': Dataset.from_pandas(df)}) | |
else: | |
# Convert the 'train' split to a pandas DataFrame for easier manipulation | |
df = ds['train'].to_pandas() | |
except Exception as load_error: # Catch broad exception for file not found or other loading issues | |
logger.warning(f"Could not load dataset '{HF_DATASET_ID}' or it might be empty/new ({load_error}). Creating structure.") | |
# Create an empty DataFrame with the correct schema | |
df = pd.DataFrame({'username': pd.Series(dtype='str'), | |
'score': pd.Series(dtype='float'), | |
'timestamp': pd.Series(dtype='str')}) | |
# Ensure columns exist, add if they don't | |
for col, dtype in [('username', 'str'), ('score', 'float'), ('timestamp', 'str')]: | |
if col not in df.columns: | |
logger.warning(f"Column '{col}' not found in dataset. Adding it.") | |
df[col] = pd.Series(dtype=dtype) | |
# Convert score column to numeric, coercing errors | |
df['score'] = pd.to_numeric(df['score'], errors='coerce') | |
# 2. Find existing score for the user | |
existing_entries = df[df['username'] == username] | |
current_timestamp = datetime.now(timezone.utc).isoformat() | |
needs_update = False | |
if not existing_entries.empty: | |
# User exists, find their highest score | |
# Handle potential NaN scores from coercion or previous bad data | |
max_existing_score = existing_entries['score'].max() | |
if pd.isna(max_existing_score) or score > max_existing_score: | |
logger.info(f"New score {score} is higher than existing max {max_existing_score} for {username}. Updating.") | |
# Remove old entries for this user | |
df = df[df['username'] != username] | |
# Add new entry | |
new_entry = pd.DataFrame([{'username': username, 'score': score, 'timestamp': current_timestamp}]) | |
df = pd.concat([df, new_entry], ignore_index=True) | |
needs_update = True | |
else: | |
logger.info(f"New score {score} is not higher than existing max {max_existing_score} for {username}. No update needed.") | |
else: | |
# User does not exist, add them | |
logger.info(f"User {username} not found. Adding new entry.") | |
new_entry = pd.DataFrame([{'username': username, 'score': score, 'timestamp': current_timestamp}]) | |
df = pd.concat([df, new_entry], ignore_index=True) | |
needs_update = True | |
# 3. Push updated data back to Hugging Face Hub if changes were made | |
if needs_update: | |
logger.info(f"Pushing updated dataset to '{HF_DATASET_ID}'...") | |
# Convert potentially modified DataFrame back to a Dataset object | |
# Ensure the schema matches if columns were added/modified. | |
# Use 'train' split convention. | |
updated_ds = DatasetDict({'train': Dataset.from_pandas(df)}) | |
pritn(updated_ds) | |
#updated_ds.push_to_hub(HF_DATASET_ID) # Token should be picked up from env or login | |
logger.info("Dataset push successful.") | |
return True | |
else: | |
return False # No update was pushed | |
except Exception as e: | |
logger.error(f"Error interacting with Hugging Face dataset '{HF_DATASET_ID}': {e}", exc_info=True) | |
# Re-raise the exception to be caught by the endpoint handler | |
raise HTTPException(status_code=500, detail=f"Failed to update Hugging Face dataset: {e}") | |
# --- API Endpoints --- | |
async def get_questions(): | |
""" | |
Provides the list of questions that agents should answer. | |
""" | |
print(questions_for_api) | |
if not questions_for_api: | |
raise HTTPException(status_code=404, detail="No questions available.") | |
return questions_for_api | |
async def submit_answers(submission: Submission = Body(...)): | |
""" | |
Receives agent submissions: | |
- Validates input. | |
- Checks presence of agent code (basic anti-cheat). | |
- Calculates score based on submitted answers vs ground truth. | |
- Updates the score on the Hugging Face dataset if it's a new high score for the user. | |
""" | |
logger.info(f"Received submission from username: {submission.username}") | |
# Basic check for agent code presence | |
if not submission.agent_code or len(submission.agent_code.strip()) < 10: | |
logger.warning(f"Submission rejected for {submission.username}: Agent code missing or too short.") | |
raise HTTPException(status_code=400, detail="Agent code is required and must be sufficiently long.") | |
if not submission.answers: | |
logger.warning(f"Submission rejected for {submission.username}: No answers provided.") | |
raise HTTPException(status_code=400, detail="No answers provided in the submission.") | |
correct_count = 0 | |
total_attempted = len(submission.answers) | |
processed_ids = set() | |
for answer_item in submission.answers: | |
task_id = str(answer_item.task_id) # Ensure string comparison | |
submitted = str(answer_item.submitted_answer) # Ensure string comparison | |
# Prevent duplicate task_id submissions in the same request | |
if task_id in processed_ids: | |
logger.warning(f"Duplicate task_id '{task_id}' in submission from {submission.username}. Skipping.") | |
total_attempted -= 1 # Adjust count as we skip it | |
continue | |
processed_ids.add(task_id) | |
# Check if task_id is valid | |
if task_id not in ground_truth_answers: | |
logger.warning(f"Task ID '{task_id}' submitted by {submission.username} not found in ground truth list.") | |
# Option 1: Reject the whole submission | |
# raise HTTPException(status_code=404, detail=f"Task ID '{task_id}' not found.") | |
# Option 2: Skip this answer and continue scoring others (chosen here) | |
total_attempted -= 1 # Don't count this attempt if the ID was invalid | |
continue | |
# Compare answers (case-insensitive, strip whitespace) | |
ground_truth = ground_truth_answers[task_id] | |
if submitted.strip().lower() == ground_truth.strip().lower(): | |
correct_count += 1 | |
logger.debug(f"Correct answer for {task_id} from {submission.username}") | |
else: | |
logger.debug(f"Incorrect answer for {task_id} from {submission.username}. Submitted: '{submitted}', Expected: '{ground_truth}'") | |
# Calculate score | |
if total_attempted == 0: | |
score = 0.0 | |
message = "No valid answers submitted or processed." | |
logger.warning(f"No valid answers processed for {submission.username}.") | |
else: | |
score = round((correct_count / total_attempted) * 100, 2) | |
message = f"Score calculated successfully. {correct_count}/{total_attempted} correct." | |
logger.info(f"Score for {submission.username}: {score}% ({correct_count}/{total_attempted})") | |
# Update Hugging Face dataset | |
try: | |
updated = update_huggingface_dataset(submission.username, score) | |
if updated: | |
message += " High score updated on leaderboard." | |
logger.info(f"Leaderboard updated for {submission.username}.") | |
else: | |
message += " Score did not improve previous record, leaderboard not updated." | |
logger.info(f"Leaderboard not updated for {submission.username} as score was not higher.") | |
except HTTPException as http_exc: | |
# Propagate HTTPException from the helper function (e.g., 500 error) | |
raise http_exc | |
except Exception as e: | |
# Catch any other unexpected errors during HF update | |
logger.error(f"Unexpected error during dataset update for {submission.username}: {e}", exc_info=True) | |
raise HTTPException(status_code=500, detail="An unexpected error occurred while updating the leaderboard.") | |
return ScoreResponse( | |
username=submission.username, | |
score=score, | |
correct_count=correct_count, | |
total_attempted=total_attempted, | |
message=message, | |
timestamp=datetime.now(timezone.utc).isoformat() | |
) | |
# --- Run the application --- | |
# This part is mainly for local development without Docker. | |
# Docker uses the CMD instruction in the Dockerfile. | |
if __name__ == "__main__": | |
logger.info("Starting FastAPI server for local development...") | |
if not questions_for_api: | |
logger.error("EXITING: Cannot start server without loaded questions.") | |
else: | |
# Read port from environment variable for consistency, default to 8000 for local if not set | |
local_port = int(os.getenv("PORT", "8000")) | |
logger.info(f"Running Uvicorn locally on port: {local_port}") | |
# Note: host='127.0.0.1' is usually fine for local runs outside docker | |
load_questions() | |
uvicorn.run(app, host="127.0.0.1", port=local_port, log_level="info") |