tipu00121 commited on
Commit
64aa500
·
verified ·
1 Parent(s): 81917a3

Upload 10 files

Browse files
Files changed (9) hide show
  1. agent.py +214 -0
  2. app.py +17 -4
  3. gitattributes +35 -0
  4. gitignore +116 -0
  5. metadata.jsonl +0 -0
  6. requirements.txt +17 -1
  7. supabase_docs.csv +0 -0
  8. system_prompt.txt +5 -0
  9. test.ipynb +684 -0
agent.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """LangGraph Agent"""
2
+ import os
3
+ from dotenv import load_dotenv
4
+ from langgraph.graph import START, StateGraph, MessagesState
5
+ from langgraph.prebuilt import tools_condition
6
+ from langgraph.prebuilt import ToolNode
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain_groq import ChatGroq
9
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
+ from langchain_community.tools.tavily_search import TavilySearchResults
11
+ from langchain_community.document_loaders import WikipediaLoader
12
+ from langchain_community.document_loaders import ArxivLoader
13
+ from langchain_community.vectorstores import SupabaseVectorStore
14
+ from langchain_core.messages import SystemMessage, HumanMessage
15
+ from langchain_core.tools import tool
16
+ from langchain.tools.retriever import create_retriever_tool
17
+ from supabase.client import Client, create_client
18
+
19
+ load_dotenv()
20
+
21
+ @tool
22
+ def multiply(a: int, b: int) -> int:
23
+ """Multiply two numbers.
24
+
25
+ Args:
26
+ a: first int
27
+ b: second int
28
+ """
29
+ return a * b
30
+
31
+ @tool
32
+ def add(a: int, b: int) -> int:
33
+ """Add two numbers.
34
+
35
+ Args:
36
+ a: first int
37
+ b: second int
38
+ """
39
+ return a + b
40
+
41
+ @tool
42
+ def subtract(a: int, b: int) -> int:
43
+ """Subtract two numbers.
44
+
45
+ Args:
46
+ a: first int
47
+ b: second int
48
+ """
49
+ return a - b
50
+
51
+ @tool
52
+ def divide(a: int, b: int) -> int:
53
+ """Divide two numbers.
54
+
55
+ Args:
56
+ a: first int
57
+ b: second int
58
+ """
59
+ if b == 0:
60
+ raise ValueError("Cannot divide by zero.")
61
+ return a / b
62
+
63
+ @tool
64
+ def modulus(a: int, b: int) -> int:
65
+ """Get the modulus of two numbers.
66
+
67
+ Args:
68
+ a: first int
69
+ b: second int
70
+ """
71
+ return a % b
72
+
73
+ @tool
74
+ def wiki_search(query: str) -> str:
75
+ """Search Wikipedia for a query and return maximum 2 results.
76
+
77
+ Args:
78
+ query: The search query."""
79
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
80
+ formatted_search_docs = "\n\n---\n\n".join(
81
+ [
82
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
83
+ for doc in search_docs
84
+ ])
85
+ return {"wiki_results": formatted_search_docs}
86
+
87
+ @tool
88
+ def web_search(query: str) -> str:
89
+ """Search Tavily for a query and return maximum 3 results.
90
+
91
+ Args:
92
+ query: The search query."""
93
+ search_docs = TavilySearchResults(max_results=3).invoke(query=query)
94
+ formatted_search_docs = "\n\n---\n\n".join(
95
+ [
96
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
97
+ for doc in search_docs
98
+ ])
99
+ return {"web_results": formatted_search_docs}
100
+
101
+ @tool
102
+ def arvix_search(query: str) -> str:
103
+ """Search Arxiv for a query and return maximum 3 result.
104
+
105
+ Args:
106
+ query: The search query."""
107
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
108
+ formatted_search_docs = "\n\n---\n\n".join(
109
+ [
110
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
111
+ for doc in search_docs
112
+ ])
113
+ return {"arvix_results": formatted_search_docs}
114
+
115
+
116
+
117
+ # load the system prompt from the file
118
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
119
+ system_prompt = f.read()
120
+
121
+ # System message
122
+ sys_msg = SystemMessage(content=system_prompt)
123
+
124
+ # build a retriever
125
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
126
+ supabase: Client = create_client(
127
+ os.environ.get("SUPABASE_URL"),
128
+ os.environ.get("SUPABASE_SERVICE_KEY"))
129
+ vector_store = SupabaseVectorStore(
130
+ client=supabase,
131
+ embedding= embeddings,
132
+ table_name="documents",
133
+ query_name="match_documents_langchain",
134
+ )
135
+ create_retriever_tool = create_retriever_tool(
136
+ retriever=vector_store.as_retriever(),
137
+ name="Question Search",
138
+ description="A tool to retrieve similar questions from a vector store.",
139
+ )
140
+
141
+
142
+
143
+ tools = [
144
+ multiply,
145
+ add,
146
+ subtract,
147
+ divide,
148
+ modulus,
149
+ wiki_search,
150
+ web_search,
151
+ arvix_search,
152
+ ]
153
+
154
+ # Build graph function
155
+ def build_graph(provider: str = "groq"):
156
+ """Build the graph"""
157
+ # Load environment variables from .env file
158
+ if provider == "google":
159
+ # Google Gemini
160
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
161
+ elif provider == "groq":
162
+ # Groq https://console.groq.com/docs/models
163
+ llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
164
+ elif provider == "huggingface":
165
+ # TODO: Add huggingface endpoint
166
+ llm = ChatHuggingFace(
167
+ llm=HuggingFaceEndpoint(
168
+ url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
169
+ temperature=0,
170
+ ),
171
+ )
172
+ else:
173
+ raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
174
+ # Bind tools to LLM
175
+ llm_with_tools = llm.bind_tools(tools)
176
+
177
+ # Node
178
+ def assistant(state: MessagesState):
179
+ """Assistant node"""
180
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
181
+
182
+ def retriever(state: MessagesState):
183
+ """Retriever node"""
184
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
185
+ example_msg = HumanMessage(
186
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
187
+ )
188
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
189
+
190
+ builder = StateGraph(MessagesState)
191
+ builder.add_node("retriever", retriever)
192
+ builder.add_node("assistant", assistant)
193
+ builder.add_node("tools", ToolNode(tools))
194
+ builder.add_edge(START, "retriever")
195
+ builder.add_edge("retriever", "assistant")
196
+ builder.add_conditional_edges(
197
+ "assistant",
198
+ tools_condition,
199
+ )
200
+ builder.add_edge("tools", "assistant")
201
+
202
+ # Compile graph
203
+ return builder.compile()
204
+
205
+ # test
206
+ if __name__ == "__main__":
207
+ question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
208
+ # Build the graph
209
+ graph = build_graph(provider="groq")
210
+ # Run the graph
211
+ messages = [HumanMessage(content=question)]
212
+ messages = graph.invoke({"messages": messages})
213
+ for m in messages["messages"]:
214
+ m.pretty_print()
app.py CHANGED
@@ -1,8 +1,13 @@
 
1
  import os
 
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
 
 
 
 
6
 
7
  # (Keep Constants as is)
8
  # --- Constants ---
@@ -10,14 +15,22 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
  # --- Basic Agent Definition ---
12
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
 
 
13
  class BasicAgent:
 
14
  def __init__(self):
15
  print("BasicAgent initialized.")
 
 
16
  def __call__(self, question: str) -> str:
17
  print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
 
 
 
21
 
22
  def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
 
1
+ """ Basic Agent Evaluation Runner"""
2
  import os
3
+ import inspect
4
  import gradio as gr
5
  import requests
 
6
  import pandas as pd
7
+ from langchain_core.messages import HumanMessage
8
+ from agent import build_graph
9
+
10
+
11
 
12
  # (Keep Constants as is)
13
  # --- Constants ---
 
15
 
16
  # --- Basic Agent Definition ---
17
  # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
18
+
19
+
20
  class BasicAgent:
21
+ """A langgraph agent."""
22
  def __init__(self):
23
  print("BasicAgent initialized.")
24
+ self.graph = build_graph()
25
+
26
  def __call__(self, question: str) -> str:
27
  print(f"Agent received question (first 50 chars): {question[:50]}...")
28
+ # Wrap the question in a HumanMessage from langchain_core
29
+ messages = [HumanMessage(content=question)]
30
+ messages = self.graph.invoke({"messages": messages})
31
+ answer = messages['messages'][-1].content
32
+ return answer[14:]
33
+
34
 
35
  def run_and_submit_all( profile: gr.OAuthProfile | None):
36
  """
gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
gitignore ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+ *.so
6
+
7
+ # Distribution / packaging
8
+ .Python
9
+ build/
10
+ develop-eggs/
11
+ dist/
12
+ downloads/
13
+ eggs/
14
+ .eggs/
15
+ lib/
16
+ lib64/
17
+ parts/
18
+ sdist/
19
+ var/
20
+ wheels/
21
+ *.egg-info/
22
+ .installed.cfg
23
+ *.egg
24
+
25
+ # Virtual environments
26
+ venv/
27
+ ENV/
28
+ env/
29
+ .env
30
+ .venv
31
+ env.bak/
32
+ venv.bak/
33
+ .python-version
34
+
35
+ # Unit test / coverage reports
36
+ htmlcov/
37
+ .tox/
38
+ .nox/
39
+ .coverage
40
+ .coverage.*
41
+ .cache
42
+ nosetests.xml
43
+ coverage.xml
44
+ *.cover
45
+ .hypothesis/
46
+ .pytest_cache/
47
+ pytest-*.xml
48
+
49
+ # Jupyter Notebook
50
+ .ipynb_checkpoints
51
+
52
+ # IPython
53
+ profile_default/
54
+ ipython_config.py
55
+
56
+ # Logs
57
+ *.log
58
+ logs/
59
+ log/
60
+
61
+ # IDE specific files
62
+ .idea/
63
+ .vscode/
64
+ *.swp
65
+ *.swo
66
+ *~
67
+ .DS_Store
68
+ .project
69
+ .pydevproject
70
+ .settings/
71
+ .vs/
72
+ *.sublime-project
73
+ *.sublime-workspace
74
+
75
+ # Database
76
+ *.db
77
+ *.rdb
78
+ *.sqlite
79
+ *.sqlite3
80
+
81
+ # Environment variables
82
+ .env
83
+ .env.local
84
+ .env.development.local
85
+ .env.test.local
86
+ .env.production.local
87
+
88
+ # macOS specific
89
+ .DS_Store
90
+ .AppleDouble
91
+ .LSOverride
92
+ Icon
93
+ ._*
94
+ .DocumentRevisions-V100
95
+ .fseventsd
96
+ .Spotlight-V100
97
+ .TemporaryItems
98
+ .Trashes
99
+ .VolumeIcon.icns
100
+ .com.apple.timemachine.donotpresent
101
+
102
+ # AI/model files
103
+ *.h5
104
+ *.pb
105
+ *.onnx
106
+ *.tflite
107
+ *.pt
108
+ *.pth
109
+ *.weights
110
+
111
+ # Temporary files
112
+ tmp/
113
+ temp/
114
+ .tmp
115
+ *.tmp
116
+
metadata.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt CHANGED
@@ -1,2 +1,18 @@
1
  gradio
2
- requests
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  gradio
2
+ requests
3
+ langchain
4
+ langchain-community
5
+ langchain-core
6
+ langchain-google-genai
7
+ langchain-huggingface
8
+ langchain-groq
9
+ langchain-tavily
10
+ langchain-chroma
11
+ langgraph
12
+ huggingface_hub
13
+ supabase
14
+ arxiv
15
+ pymupdf
16
+ wikipedia
17
+ pgvector
18
+ python-dotenv
supabase_docs.csv ADDED
The diff for this file is too large to render. See raw diff
 
system_prompt.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ You are a helpful assistant tasked with answering questions using a set of tools.
2
+ Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
3
+ FINAL ANSWER: [YOUR FINAL ANSWER].
4
+ YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
5
+ Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
test.ipynb ADDED
@@ -0,0 +1,684 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "d0cc4adf",
6
+ "metadata": {},
7
+ "source": [
8
+ "### Question data"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": 2,
14
+ "id": "14e3f417",
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "# Load metadata.jsonl\n",
19
+ "import json\n",
20
+ "# Load the metadata.jsonl file\n",
21
+ "with open('metadata.jsonl', 'r') as jsonl_file:\n",
22
+ " json_list = list(jsonl_file)\n",
23
+ "\n",
24
+ "json_QA = []\n",
25
+ "for json_str in json_list:\n",
26
+ " json_data = json.loads(json_str)\n",
27
+ " json_QA.append(json_data)"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": 3,
33
+ "id": "5e2da6fc",
34
+ "metadata": {},
35
+ "outputs": [
36
+ {
37
+ "name": "stdout",
38
+ "output_type": "stream",
39
+ "text": [
40
+ "==================================================\n",
41
+ "Task ID: ed58682d-bc52-4baa-9eb0-4eb81e1edacc\n",
42
+ "Question: What is the last word before the second chorus of the King of Pop's fifth single from his sixth studio album?\n",
43
+ "Level: 2\n",
44
+ "Final Answer: stare\n",
45
+ "Annotator Metadata: \n",
46
+ " ├── Steps: \n",
47
+ " │ ├── 1. Google searched \"King of Pop\".\n",
48
+ " │ ├── 2. Clicked on Michael Jackson's Wikipedia.\n",
49
+ " │ ├── 3. Scrolled down to \"Discography\".\n",
50
+ " │ ├── 4. Clicked on the sixth album, \"Thriller\".\n",
51
+ " │ ├── 5. Looked under \"Singles from Thriller\".\n",
52
+ " │ ├── 6. Clicked on the fifth single, \"Human Nature\".\n",
53
+ " │ ├── 7. Google searched \"Human Nature Michael Jackson Lyrics\".\n",
54
+ " │ ├── 8. Looked at the opening result with full lyrics sourced by Musixmatch.\n",
55
+ " │ ├── 9. Looked for repeating lyrics to determine the chorus.\n",
56
+ " │ ├── 10. Determined the chorus begins with \"If they say\" and ends with \"Does he do me that way?\"\n",
57
+ " │ ├── 11. Found the second instance of the chorus within the lyrics.\n",
58
+ " │ ├── 12. Noted the last word before the second chorus - \"stare\".\n",
59
+ " ├── Number of steps: 12\n",
60
+ " ├── How long did this take?: 20 minutes\n",
61
+ " ├── Tools:\n",
62
+ " │ ├── Web Browser\n",
63
+ " └── Number of tools: 1\n",
64
+ "==================================================\n"
65
+ ]
66
+ }
67
+ ],
68
+ "source": [
69
+ "# randomly select 3 samples\n",
70
+ "# {\"task_id\": \"c61d22de-5f6c-4958-a7f6-5e9707bd3466\", \"Question\": \"A paper about AI regulation that was originally submitted to arXiv.org in June 2022 shows a figure with three axes, where each axis has a label word at both ends. Which of these words is used to describe a type of society in a Physics and Society article submitted to arXiv.org on August 11, 2016?\", \"Level\": 2, \"Final answer\": \"egalitarian\", \"file_name\": \"\", \"Annotator Metadata\": {\"Steps\": \"1. Go to arxiv.org and navigate to the Advanced Search page.\\n2. Enter \\\"AI regulation\\\" in the search box and select \\\"All fields\\\" from the dropdown.\\n3. Enter 2022-06-01 and 2022-07-01 into the date inputs, select \\\"Submission date (original)\\\", and submit the search.\\n4. Go through the search results to find the article that has a figure with three axes and labels on each end of the axes, titled \\\"Fairness in Agreement With European Values: An Interdisciplinary Perspective on AI Regulation\\\".\\n5. Note the six words used as labels: deontological, egalitarian, localized, standardized, utilitarian, and consequential.\\n6. Go back to arxiv.org\\n7. Find \\\"Physics and Society\\\" and go to the page for the \\\"Physics and Society\\\" category.\\n8. Note that the tag for this category is \\\"physics.soc-ph\\\".\\n9. Go to the Advanced Search page.\\n10. Enter \\\"physics.soc-ph\\\" in the search box and select \\\"All fields\\\" from the dropdown.\\n11. Enter 2016-08-11 and 2016-08-12 into the date inputs, select \\\"Submission date (original)\\\", and submit the search.\\n12. Search for instances of the six words in the results to find the paper titled \\\"Phase transition from egalitarian to hierarchical societies driven by competition between cognitive and social constraints\\\", indicating that \\\"egalitarian\\\" is the correct answer.\", \"Number of steps\": \"12\", \"How long did this take?\": \"8 minutes\", \"Tools\": \"1. Web browser\\n2. Image recognition tools (to identify and parse a figure with three axes)\", \"Number of tools\": \"2\"}}\n",
71
+ "\n",
72
+ "import random\n",
73
+ "# random.seed(42)\n",
74
+ "random_samples = random.sample(json_QA, 1)\n",
75
+ "for sample in random_samples:\n",
76
+ " print(\"=\" * 50)\n",
77
+ " print(f\"Task ID: {sample['task_id']}\")\n",
78
+ " print(f\"Question: {sample['Question']}\")\n",
79
+ " print(f\"Level: {sample['Level']}\")\n",
80
+ " print(f\"Final Answer: {sample['Final answer']}\")\n",
81
+ " print(f\"Annotator Metadata: \")\n",
82
+ " print(f\" ├── Steps: \")\n",
83
+ " for step in sample['Annotator Metadata']['Steps'].split('\\n'):\n",
84
+ " print(f\" │ ├── {step}\")\n",
85
+ " print(f\" ├── Number of steps: {sample['Annotator Metadata']['Number of steps']}\")\n",
86
+ " print(f\" ├── How long did this take?: {sample['Annotator Metadata']['How long did this take?']}\")\n",
87
+ " print(f\" ├── Tools:\")\n",
88
+ " for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
89
+ " print(f\" │ ├── {tool}\")\n",
90
+ " print(f\" └── Number of tools: {sample['Annotator Metadata']['Number of tools']}\")\n",
91
+ "print(\"=\" * 50)"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": 56,
97
+ "id": "4bb02420",
98
+ "metadata": {},
99
+ "outputs": [],
100
+ "source": [
101
+ "### build a vector database based on the metadata.jsonl\n",
102
+ "# https://python.langchain.com/docs/integrations/vectorstores/supabase/\n",
103
+ "import os\n",
104
+ "from dotenv import load_dotenv\n",
105
+ "from langchain_huggingface import HuggingFaceEmbeddings\n",
106
+ "from langchain_community.vectorstores import SupabaseVectorStore\n",
107
+ "from supabase.client import Client, create_client\n",
108
+ "\n",
109
+ "\n",
110
+ "load_dotenv()\n",
111
+ "embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-mpnet-base-v2\") # dim=768\n",
112
+ "\n",
113
+ "supabase_url = os.environ.get(\"SUPABASE_URL\")\n",
114
+ "supabase_key = os.environ.get(\"SUPABASE_SERVICE_KEY\")\n",
115
+ "supabase: Client = create_client(supabase_url, supabase_key)"
116
+ ]
117
+ },
118
+ {
119
+ "cell_type": "code",
120
+ "execution_count": null,
121
+ "id": "a070b955",
122
+ "metadata": {},
123
+ "outputs": [],
124
+ "source": [
125
+ "# wrap the metadata.jsonl's questions and answers into a list of document\n",
126
+ "from langchain.schema import Document\n",
127
+ "docs = []\n",
128
+ "for sample in json_QA:\n",
129
+ " content = f\"Question : {sample['Question']}\\n\\nFinal answer : {sample['Final answer']}\"\n",
130
+ " doc = {\n",
131
+ " \"content\" : content,\n",
132
+ " \"metadata\" : { # meatadata的格式必须时source键,否则会报错\n",
133
+ " \"source\" : sample['task_id']\n",
134
+ " },\n",
135
+ " \"embedding\" : embeddings.embed_query(content),\n",
136
+ " }\n",
137
+ " docs.append(doc)\n",
138
+ "\n",
139
+ "# upload the documents to the vector database\n",
140
+ "try:\n",
141
+ " response = (\n",
142
+ " supabase.table(\"documents\")\n",
143
+ " .insert(docs)\n",
144
+ " .execute()\n",
145
+ " )\n",
146
+ "except Exception as exception:\n",
147
+ " print(\"Error inserting data into Supabase:\", exception)\n",
148
+ "\n",
149
+ "# ALTERNATIVE : Save the documents (a list of dict) into a csv file, and manually upload it to Supabase\n",
150
+ "# import pandas as pd\n",
151
+ "# df = pd.DataFrame(docs)\n",
152
+ "# df.to_csv('supabase_docs.csv', index=False)"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": 54,
158
+ "id": "77fb9dbb",
159
+ "metadata": {},
160
+ "outputs": [],
161
+ "source": [
162
+ "# add items to vector database\n",
163
+ "vector_store = SupabaseVectorStore(\n",
164
+ " client=supabase,\n",
165
+ " embedding= embeddings,\n",
166
+ " table_name=\"documents\",\n",
167
+ " query_name=\"match_documents_langchain\",\n",
168
+ ")\n",
169
+ "retriever = vector_store.as_retriever()"
170
+ ]
171
+ },
172
+ {
173
+ "cell_type": "code",
174
+ "execution_count": 55,
175
+ "id": "12a05971",
176
+ "metadata": {},
177
+ "outputs": [
178
+ {
179
+ "name": "stderr",
180
+ "output_type": "stream",
181
+ "text": [
182
+ "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
183
+ "To disable this warning, you can either:\n",
184
+ "\t- Avoid using `tokenizers` before the fork if possible\n",
185
+ "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
186
+ ]
187
+ },
188
+ {
189
+ "data": {
190
+ "text/plain": [
191
+ "Document(metadata={'source': '840bfca7-4f7b-481a-8794-c560c340185d'}, page_content='Question : On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\\n\\nFinal answer : 80GSFC21M0002')"
192
+ ]
193
+ },
194
+ "execution_count": 55,
195
+ "metadata": {},
196
+ "output_type": "execute_result"
197
+ }
198
+ ],
199
+ "source": [
200
+ "query = \"On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\"\n",
201
+ "# matched_docs = vector_store.similarity_search(query, 2)\n",
202
+ "docs = retriever.invoke(query)\n",
203
+ "docs[0]"
204
+ ]
205
+ },
206
+ {
207
+ "cell_type": "code",
208
+ "execution_count": 31,
209
+ "id": "1eae5ba4",
210
+ "metadata": {},
211
+ "outputs": [
212
+ {
213
+ "name": "stdout",
214
+ "output_type": "stream",
215
+ "text": [
216
+ "List of tools used in all samples:\n",
217
+ "Total number of tools used: 83\n",
218
+ " ├── web browser: 107\n",
219
+ " ├── image recognition tools (to identify and parse a figure with three axes): 1\n",
220
+ " ├── search engine: 101\n",
221
+ " ├── calculator: 34\n",
222
+ " ├── unlambda compiler (optional): 1\n",
223
+ " ├── a web browser.: 2\n",
224
+ " ├── a search engine.: 2\n",
225
+ " ├── a calculator.: 1\n",
226
+ " ├── microsoft excel: 5\n",
227
+ " ├── google search: 1\n",
228
+ " ├── ne: 9\n",
229
+ " ├── pdf access: 7\n",
230
+ " ├── file handling: 2\n",
231
+ " ├── python: 3\n",
232
+ " ├── image recognition tools: 12\n",
233
+ " ├── jsonld file access: 1\n",
234
+ " ├── video parsing: 1\n",
235
+ " ├── python compiler: 1\n",
236
+ " ├── video recognition tools: 3\n",
237
+ " ├── pdf viewer: 7\n",
238
+ " ├── microsoft excel / google sheets: 3\n",
239
+ " ├── word document access: 1\n",
240
+ " ├── tool to extract text from images: 1\n",
241
+ " ├── a word reversal tool / script: 1\n",
242
+ " ├── counter: 1\n",
243
+ " ├── excel: 3\n",
244
+ " ├── image recognition: 5\n",
245
+ " ├── color recognition: 3\n",
246
+ " ├── excel file access: 3\n",
247
+ " ├── xml file access: 1\n",
248
+ " ├── access to the internet archive, web.archive.org: 1\n",
249
+ " ├── text processing/diff tool: 1\n",
250
+ " ├── gif parsing tools: 1\n",
251
+ " ├── a web browser: 7\n",
252
+ " ├── a search engine: 7\n",
253
+ " ├── a speech-to-text tool: 2\n",
254
+ " ├── code/data analysis tools: 1\n",
255
+ " ├── audio capability: 2\n",
256
+ " ├── pdf reader: 1\n",
257
+ " ├── markdown: 1\n",
258
+ " ├── a calculator: 5\n",
259
+ " ├── access to wikipedia: 3\n",
260
+ " ├── image recognition/ocr: 3\n",
261
+ " ├── google translate access: 1\n",
262
+ " ├── ocr: 4\n",
263
+ " ├── bass note data: 1\n",
264
+ " ├── text editor: 1\n",
265
+ " ├── xlsx file access: 1\n",
266
+ " ├── powerpoint viewer: 1\n",
267
+ " ├── csv file access: 1\n",
268
+ " ├── calculator (or use excel): 1\n",
269
+ " ├── computer algebra system: 1\n",
270
+ " ├── video processing software: 1\n",
271
+ " ├── audio processing software: 1\n",
272
+ " ├── computer vision: 1\n",
273
+ " ├── google maps: 1\n",
274
+ " ├── access to excel files: 1\n",
275
+ " ├── calculator (or ability to count): 1\n",
276
+ " ├── a file interface: 3\n",
277
+ " ├── a python ide: 1\n",
278
+ " ├── spreadsheet editor: 1\n",
279
+ " ├── tools required: 1\n",
280
+ " ├── b browser: 1\n",
281
+ " ├── image recognition and processing tools: 1\n",
282
+ " ├── computer vision or ocr: 1\n",
283
+ " ├── c++ compiler: 1\n",
284
+ " ├── access to google maps: 1\n",
285
+ " ├── youtube player: 1\n",
286
+ " ├── natural language processor: 1\n",
287
+ " ├── graph interaction tools: 1\n",
288
+ " ├── bablyonian cuniform -> arabic legend: 1\n",
289
+ " ├── access to youtube: 1\n",
290
+ " ├── image search tools: 1\n",
291
+ " ├── calculator or counting function: 1\n",
292
+ " ├── a speech-to-text audio processing tool: 1\n",
293
+ " ├── access to academic journal websites: 1\n",
294
+ " ├── pdf reader/extracter: 1\n",
295
+ " ├── rubik's cube model: 1\n",
296
+ " ├── wikipedia: 1\n",
297
+ " ├── video capability: 1\n",
298
+ " ├── image processing tools: 1\n",
299
+ " ├── age recognition software: 1\n",
300
+ " ├── youtube: 1\n"
301
+ ]
302
+ }
303
+ ],
304
+ "source": [
305
+ "# list of the tools used in all the samples\n",
306
+ "from collections import Counter, OrderedDict\n",
307
+ "\n",
308
+ "tools = []\n",
309
+ "for sample in json_QA:\n",
310
+ " for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
311
+ " tool = tool[2:].strip().lower()\n",
312
+ " if tool.startswith(\"(\"):\n",
313
+ " tool = tool[11:].strip()\n",
314
+ " tools.append(tool)\n",
315
+ "tools_counter = OrderedDict(Counter(tools))\n",
316
+ "print(\"List of tools used in all samples:\")\n",
317
+ "print(\"Total number of tools used:\", len(tools_counter))\n",
318
+ "for tool, count in tools_counter.items():\n",
319
+ " print(f\" ├── {tool}: {count}\")"
320
+ ]
321
+ },
322
+ {
323
+ "cell_type": "markdown",
324
+ "id": "5efee12a",
325
+ "metadata": {},
326
+ "source": [
327
+ "#### Graph"
328
+ ]
329
+ },
330
+ {
331
+ "cell_type": "code",
332
+ "execution_count": 55,
333
+ "id": "7fe573cc",
334
+ "metadata": {},
335
+ "outputs": [],
336
+ "source": [
337
+ "system_prompt = \"\"\"\n",
338
+ "You are a helpful assistant tasked with answering questions using a set of tools.\n",
339
+ "If the tool is not available, you can try to find the information online. You can also use your own knowledge to answer the question. \n",
340
+ "You need to provide a step-by-step explanation of how you arrived at the answer.\n",
341
+ "==========================\n",
342
+ "Here is a few examples showing you how to answer the question step by step.\n",
343
+ "\"\"\"\n",
344
+ "for i, samples in enumerate(random_samples):\n",
345
+ " system_prompt += f\"\\nQuestion {i+1}: {samples['Question']}\\nSteps:\\n{samples['Annotator Metadata']['Steps']}\\nTools:\\n{samples['Annotator Metadata']['Tools']}\\nFinal Answer: {samples['Final answer']}\\n\"\n",
346
+ "system_prompt += \"\\n==========================\\n\"\n",
347
+ "system_prompt += \"Now, please answer the following question step by step.\\n\"\n",
348
+ "\n",
349
+ "# save the system_prompt to a file\n",
350
+ "with open('system_prompt.txt', 'w') as f:\n",
351
+ " f.write(system_prompt)"
352
+ ]
353
+ },
354
+ {
355
+ "cell_type": "code",
356
+ "execution_count": 56,
357
+ "id": "d6beb0da",
358
+ "metadata": {},
359
+ "outputs": [
360
+ {
361
+ "name": "stdout",
362
+ "output_type": "stream",
363
+ "text": [
364
+ "\n",
365
+ "You are a helpful assistant tasked with answering questions using a set of tools.\n",
366
+ "If the tool is not available, you can try to find the information online. You can also use your own knowledge to answer the question. \n",
367
+ "You need to provide a step-by-step explanation of how you arrived at the answer.\n",
368
+ "==========================\n",
369
+ "Here is a few examples showing you how to answer the question step by step.\n",
370
+ "\n",
371
+ "Question 1: In terms of geographical distance between capital cities, which 2 countries are the furthest from each other within the ASEAN bloc according to wikipedia? Answer using a comma separated list, ordering the countries by alphabetical order.\n",
372
+ "Steps:\n",
373
+ "1. Search the web for \"ASEAN bloc\".\n",
374
+ "2. Click the Wikipedia result for the ASEAN Free Trade Area.\n",
375
+ "3. Scroll down to find the list of member states.\n",
376
+ "4. Click into the Wikipedia pages for each member state, and note its capital.\n",
377
+ "5. Search the web for the distance between the first two capitals. The results give travel distance, not geographic distance, which might affect the answer.\n",
378
+ "6. Thinking it might be faster to judge the distance by looking at a map, search the web for \"ASEAN bloc\" and click into the images tab.\n",
379
+ "7. View a map of the member countries. Since they're clustered together in an arrangement that's not very linear, it's difficult to judge distances by eye.\n",
380
+ "8. Return to the Wikipedia page for each country. Click the GPS coordinates for each capital to get the coordinates in decimal notation.\n",
381
+ "9. Place all these coordinates into a spreadsheet.\n",
382
+ "10. Write formulas to calculate the distance between each capital.\n",
383
+ "11. Write formula to get the largest distance value in the spreadsheet.\n",
384
+ "12. Note which two capitals that value corresponds to: Jakarta and Naypyidaw.\n",
385
+ "13. Return to the Wikipedia pages to see which countries those respective capitals belong to: Indonesia, Myanmar.\n",
386
+ "Tools:\n",
387
+ "1. Search engine\n",
388
+ "2. Web browser\n",
389
+ "3. Microsoft Excel / Google Sheets\n",
390
+ "Final Answer: Indonesia, Myanmar\n",
391
+ "\n",
392
+ "Question 2: Review the chess position provided in the image. It is black's turn. Provide the correct next move for black which guarantees a win. Please provide your response in algebraic notation.\n",
393
+ "Steps:\n",
394
+ "Step 1: Evaluate the position of the pieces in the chess position\n",
395
+ "Step 2: Report the best move available for black: \"Rd5\"\n",
396
+ "Tools:\n",
397
+ "1. Image recognition tools\n",
398
+ "Final Answer: Rd5\n",
399
+ "\n",
400
+ "==========================\n",
401
+ "Now, please answer the following question step by step.\n",
402
+ "\n"
403
+ ]
404
+ }
405
+ ],
406
+ "source": [
407
+ "# load the system prompt from the file\n",
408
+ "with open('system_prompt.txt', 'r') as f:\n",
409
+ " system_prompt = f.read()\n",
410
+ "print(system_prompt)"
411
+ ]
412
+ },
413
+ {
414
+ "cell_type": "code",
415
+ "execution_count": null,
416
+ "id": "42fde0f8",
417
+ "metadata": {},
418
+ "outputs": [],
419
+ "source": [
420
+ "import dotenv\n",
421
+ "from langgraph.graph import MessagesState, START, StateGraph\n",
422
+ "from langgraph.prebuilt import tools_condition\n",
423
+ "from langgraph.prebuilt import ToolNode\n",
424
+ "from langchain_google_genai import ChatGoogleGenerativeAI\n",
425
+ "from langchain_huggingface import HuggingFaceEmbeddings\n",
426
+ "from langchain_community.tools.tavily_search import TavilySearchResults\n",
427
+ "from langchain_community.document_loaders import WikipediaLoader\n",
428
+ "from langchain_community.document_loaders import ArxivLoader\n",
429
+ "from langchain_community.vectorstores import SupabaseVectorStore\n",
430
+ "from langchain.tools.retriever import create_retriever_tool\n",
431
+ "from langchain_core.messages import HumanMessage, SystemMessage\n",
432
+ "from langchain_core.tools import tool\n",
433
+ "from supabase.client import Client, create_client\n",
434
+ "\n",
435
+ "# Define the retriever from supabase\n",
436
+ "load_dotenv()\n",
437
+ "embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-mpnet-base-v2\") # dim=768\n",
438
+ "\n",
439
+ "supabase_url = os.environ.get(\"SUPABASE_URL\")\n",
440
+ "supabase_key = os.environ.get(\"SUPABASE_SERVICE_KEY\")\n",
441
+ "supabase: Client = create_client(supabase_url, supabase_key)\n",
442
+ "vector_store = SupabaseVectorStore(\n",
443
+ " client=supabase,\n",
444
+ " embedding= embeddings,\n",
445
+ " table_name=\"documents\",\n",
446
+ " query_name=\"match_documents_langchain\",\n",
447
+ ")\n",
448
+ "\n",
449
+ "question_retrieve_tool = create_retriever_tool(\n",
450
+ " vector_store.as_retriever(),\n",
451
+ " \"Question Retriever\",\n",
452
+ " \"Find similar questions in the vector database for the given question.\",\n",
453
+ ")\n",
454
+ "\n",
455
+ "@tool\n",
456
+ "def multiply(a: int, b: int) -> int:\n",
457
+ " \"\"\"Multiply two numbers.\n",
458
+ "\n",
459
+ " Args:\n",
460
+ " a: first int\n",
461
+ " b: second int\n",
462
+ " \"\"\"\n",
463
+ " return a * b\n",
464
+ "\n",
465
+ "@tool\n",
466
+ "def add(a: int, b: int) -> int:\n",
467
+ " \"\"\"Add two numbers.\n",
468
+ " \n",
469
+ " Args:\n",
470
+ " a: first int\n",
471
+ " b: second int\n",
472
+ " \"\"\"\n",
473
+ " return a + b\n",
474
+ "\n",
475
+ "@tool\n",
476
+ "def subtract(a: int, b: int) -> int:\n",
477
+ " \"\"\"Subtract two numbers.\n",
478
+ " \n",
479
+ " Args:\n",
480
+ " a: first int\n",
481
+ " b: second int\n",
482
+ " \"\"\"\n",
483
+ " return a - b\n",
484
+ "\n",
485
+ "@tool\n",
486
+ "def divide(a: int, b: int) -> int:\n",
487
+ " \"\"\"Divide two numbers.\n",
488
+ " \n",
489
+ " Args:\n",
490
+ " a: first int\n",
491
+ " b: second int\n",
492
+ " \"\"\"\n",
493
+ " if b == 0:\n",
494
+ " raise ValueError(\"Cannot divide by zero.\")\n",
495
+ " return a / b\n",
496
+ "\n",
497
+ "@tool\n",
498
+ "def modulus(a: int, b: int) -> int:\n",
499
+ " \"\"\"Get the modulus of two numbers.\n",
500
+ " \n",
501
+ " Args:\n",
502
+ " a: first int\n",
503
+ " b: second int\n",
504
+ " \"\"\"\n",
505
+ " return a % b\n",
506
+ "\n",
507
+ "@tool\n",
508
+ "def wiki_search(query: str) -> str:\n",
509
+ " \"\"\"Search Wikipedia for a query and return maximum 2 results.\n",
510
+ " \n",
511
+ " Args:\n",
512
+ " query: The search query.\"\"\"\n",
513
+ " search_docs = WikipediaLoader(query=query, load_max_docs=2).load()\n",
514
+ " formatted_search_docs = \"\\n\\n---\\n\\n\".join(\n",
515
+ " [\n",
516
+ " f'<Document source=\"{doc.metadata[\"source\"]}\" page=\"{doc.metadata.get(\"page\", \"\")}\"/>\\n{doc.page_content}\\n</Document>'\n",
517
+ " for doc in search_docs\n",
518
+ " ])\n",
519
+ " return {\"wiki_results\": formatted_search_docs}\n",
520
+ "\n",
521
+ "@tool\n",
522
+ "def web_search(query: str) -> str:\n",
523
+ " \"\"\"Search Tavily for a query and return maximum 3 results.\n",
524
+ " \n",
525
+ " Args:\n",
526
+ " query: The search query.\"\"\"\n",
527
+ " search_docs = TavilySearchResults(max_results=3).invoke(query=query)\n",
528
+ " formatted_search_docs = \"\\n\\n---\\n\\n\".join(\n",
529
+ " [\n",
530
+ " f'<Document source=\"{doc.metadata[\"source\"]}\" page=\"{doc.metadata.get(\"page\", \"\")}\"/>\\n{doc.page_content}\\n</Document>'\n",
531
+ " for doc in search_docs\n",
532
+ " ])\n",
533
+ " return {\"web_results\": formatted_search_docs}\n",
534
+ "\n",
535
+ "@tool\n",
536
+ "def arvix_search(query: str) -> str:\n",
537
+ " \"\"\"Search Arxiv for a query and return maximum 3 result.\n",
538
+ " \n",
539
+ " Args:\n",
540
+ " query: The search query.\"\"\"\n",
541
+ " search_docs = ArxivLoader(query=query, load_max_docs=3).load()\n",
542
+ " formatted_search_docs = \"\\n\\n---\\n\\n\".join(\n",
543
+ " [\n",
544
+ " f'<Document source=\"{doc.metadata[\"source\"]}\" page=\"{doc.metadata.get(\"page\", \"\")}\"/>\\n{doc.page_content[:1000]}\\n</Document>'\n",
545
+ " for doc in search_docs\n",
546
+ " ])\n",
547
+ " return {\"arvix_results\": formatted_search_docs}\n",
548
+ "\n",
549
+ "@tool\n",
550
+ "def similar_question_search(question: str) -> str:\n",
551
+ " \"\"\"Search the vector database for similar questions and return the first results.\n",
552
+ " \n",
553
+ " Args:\n",
554
+ " question: the question human provided.\"\"\"\n",
555
+ " matched_docs = vector_store.similarity_search(query, 3)\n",
556
+ " formatted_search_docs = \"\\n\\n---\\n\\n\".join(\n",
557
+ " [\n",
558
+ " f'<Document source=\"{doc.metadata[\"source\"]}\" page=\"{doc.metadata.get(\"page\", \"\")}\"/>\\n{doc.page_content[:1000]}\\n</Document>'\n",
559
+ " for doc in matched_docs\n",
560
+ " ])\n",
561
+ " return {\"similar_questions\": formatted_search_docs}\n",
562
+ "\n",
563
+ "tools = [\n",
564
+ " multiply,\n",
565
+ " add,\n",
566
+ " subtract,\n",
567
+ " divide,\n",
568
+ " modulus,\n",
569
+ " wiki_search,\n",
570
+ " web_search,\n",
571
+ " arvix_search,\n",
572
+ " question_retrieve_tool\n",
573
+ "]\n",
574
+ "\n",
575
+ "llm = ChatGoogleGenerativeAI(model=\"gemini-2.0-flash\")\n",
576
+ "llm_with_tools = llm.bind_tools(tools)"
577
+ ]
578
+ },
579
+ {
580
+ "cell_type": "code",
581
+ "execution_count": null,
582
+ "id": "7dd0716c",
583
+ "metadata": {},
584
+ "outputs": [],
585
+ "source": [
586
+ "# load the system prompt from the file\n",
587
+ "with open('system_prompt.txt', 'r') as f:\n",
588
+ " system_prompt = f.read()\n",
589
+ "\n",
590
+ "\n",
591
+ "# System message\n",
592
+ "sys_msg = SystemMessage(content=system_prompt)\n",
593
+ "\n",
594
+ "# Node\n",
595
+ "def assistant(state: MessagesState):\n",
596
+ " \"\"\"Assistant node\"\"\"\n",
597
+ " return {\"messages\": [llm_with_tools.invoke([sys_msg] + state[\"messages\"])]}\n",
598
+ "\n",
599
+ "# Build graph\n",
600
+ "builder = StateGraph(MessagesState)\n",
601
+ "builder.add_node(\"assistant\", assistant)\n",
602
+ "builder.add_node(\"tools\", ToolNode(tools))\n",
603
+ "builder.add_edge(START, \"assistant\")\n",
604
+ "builder.add_conditional_edges(\n",
605
+ " \"assistant\",\n",
606
+ " # If the latest message (result) from assistant is a tool call -> tools_condition routes to tools\n",
607
+ " # If the latest message (result) from assistant is a not a tool call -> tools_condition routes to END\n",
608
+ " tools_condition,\n",
609
+ ")\n",
610
+ "builder.add_edge(\"tools\", \"assistant\")\n",
611
+ "\n",
612
+ "# Compile graph\n",
613
+ "graph = builder.compile()\n"
614
+ ]
615
+ },
616
+ {
617
+ "cell_type": "code",
618
+ "execution_count": 49,
619
+ "id": "f4e77216",
620
+ "metadata": {},
621
+ "outputs": [
622
+ {
623
+ "data": {
624
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAANgAAAD5CAIAAADKsmwpAAAQAElEQVR4nOydB1wUR9vA5zrcwdGOXqRIFRC7gkZsxK7YguU1xhgTJcVXjVETNSYajCbGYCxYYuJnjYliYq+xRo2xIIqAgNI7HFzh+vfo5UVEQEzYuzl2/r/7HXu7e7dX/jwz88zsLFun0yECwdiwEYGAAUREAhYQEQlYQEQkYAERkYAFREQCFpikiAq5pixfKavWyKrVarVOrTSBDBTPnMnmMviWbL6Q5ehuhgjPYkoiSqtU6TekmcmSqjKVpS2Hb8mC31Voy0GmkArValDRQ4WsWsrhMbPvy7yCBd4hcLNAhCcwTCKhrdXoLv9WVpqvsHPhegdbuLY1R6ZMjUyTlSzNTZflZ9aED7Xz7WCJaI8JiHj3ivj3fSXhw+w6RNqg1gWE9suHyhQyTdR/nMwtWIjG4C7i7/uKzfjM7kNEqPVSWqBIXJc38HUnN18+oitYi3hyR5GTl1lIhBWiAQfW5fWKFolceIiW4Cti4vq8tmEWweG0sFDPgXW5IRHW8KkR/WAiLLmQWOIZJKCVhUB0rNuVo2UVRUpEP3AUMfVGNZvDDIu0RvRj4nyPs/uKaTg2D0cRz+0r6diXjhYCDAYDigLIVSGagZ2If52qCI4Q8szpm8vo2Nfm3tWqGqkG0Qm8RIQiKTtVFj60NSdrmsMro+xvnatEdAIvETPvSKFPFtEeD39+8mUxohN4/erQ8QWdsMiwfPTRR7/99ht6efr375+fn48oAHpZrEXcgodyRBvwErGyROUdYmgRU1JS0MtTWFhYWUlh6enX2SInTYZoA0YiQvW8olhJXTMlMTFx3LhxERER/fr1+/DDD4uKimBl586dIaotXbo0MjISHmo0mo0bN44cOTI8PHzQoEErVqyQy/8OSxD/du3a9f777/fo0ePChQtDhw6FlcOHD58zZw6iAIGQXZpLo4QiRiJKq9Tw7SNquHnz5rJly8aPH793795vv/0Wgtn8+fNh/ZEjR+AevDx48CAsgGo//PDDzJkz9+zZs2TJknPnzq1bt07/Cmw2e//+/W3btk1ISOjSpUtcXBys3LFjx2effYYoAL4K+EIQbcBoPKK0SiMQUhUOMzIyeDzesGHDwCc3NzcIdQUFBbDeyupx5w2fz9cvQBSEgAe2wbKHh0dUVNSlS5f0rwAZPjMzM4iI+ocCweMqhFAo1C+0OAIrllRMowwORiLqtDouZU1mKILBpGnTpo0YMaJbt24uLi52dnbP72ZtbX348GGIncXFxWq1WiaTgaO1W0NDQ5GhYLEZXDMaJRAw+qh8IVtcokLU4OnpuW3bNoiFa9euhYrdlClTkpOTn99t1apVW7Zsgark5s2boZiOjo6uu9XCwnDDESSVanAR0QaMRIRyGUpnRBm+vr4Q6k6ePAmVPBaLNWvWLKXymdYAtFSgpvj6668PHjzY1dVVJBJJJBJkJCitqGAIThHRkm3rxNFqKenvh/iXlJQEC6Bgp06dZsyYAe2VsrK/u3T1gwy0Wi24qK8sAlKp9Pz5802PP6BudIJCprF3p9HYRLxqIWZ8FnSuIAq4fPny7NmzT58+nZubm5qaCo1iZ2dnJycn3hNu3LgBK6ES6e/vf+jQIdgnPT0dQibkeqqqqh4+fAj1xXovCM0UuL948WJmZiaigNS/qp09TfvUnJcCLxE92wke3qVExKlTp0KFb82aNWPGjImNjYVIFh8fD+bBJqgvnjp1ClI2kDJcvHgxBEWoIy5YsCAmJgb2BFknT54MbZd6LxgYGAi5xm+++WblypWopdGodXkP5B4BNDpzAK8R2nKJ+sSOohHvuCJ6k3VXkpMmfyXaHtEGvCKiuQXbxpF7m2YDT57n8q9ldBudjt0J9hHDRAnzM9r3bnhgLJSb0EHX4CZoAnO53AY3eXl5Qe4GUcMPT2hwE6R7Gmt3Q8m+YcOGBjfdv17l4G5m69jwZ2mt4Hjy1K1zlQyGrv0rDZ/FXF1d3eB6hUIBIuqrffVgMpkU9X/oj1svDVSLSqXicDgNboLGe91UeV0ObcnvPcbe0rrhJ7ZWMD2LD36Mdt2tDD8kzOjQ9oNj2ok0dJrL+f0lZYUKRCfO7C128jSjoYUI5/Oaoet579c5r4yyd/GhRTrt7E/Fbr7mtJ0HB99udQaTEfOhxx9HylKuVaFWjVajO7Auz9aJS+fZmExgEqbLh0qzU2Thw0StMsH754ny1OvVkWPt6TzxDTKVaelK8hSXfysVCNlQTEMVylxg8qMBinNqslNl109UhEVadx1oy2TSaKBNg5iGiHpy02UQPLKSpfbuPCsRB7yEG1/I0moR/rAYSFyukoo1OqS7/2c1vPO27QWhr1hzuOSsxceYkoi1FGTJS/OU0io13JgMhkzSkoPHZDLZo0ePIOGMWhRLGw581QIrlqUtx83HXGBFZi9/BpMUkVJSUlKWL1++Y8cORDAg5P+SgAVERAIWEBEJWEBEJGABEZGABUREAhYQEQlYQEQkYAERkYAFREQCFhARCVhARCRgARGRgAVERAIWEBEJWEBEJGABEZGABUREAhYQEQlYQEQkYAERkYAFREQCFhARCVhARKwPg8Gwt6fR5NWYQESsj06nKykpQQTDQkQkYAERkYAFREQCFhARCVhARCRgARGRgAVERAIWEBEJWEBEJGABEZGABUREAhYQEQlYQEQkYAERkYAFREQCFpAL/vzN+PHjJRIJg8FQKpVisVgkEsGyQqE4fvw4IlAPuRDc3wwaNKi4uDg/P7+0tFSlUhUUFMCypSV9r1trYIiIfxMTE+Pu7l53DUTE3r17I4JBICL+DZfLHTlyJIv19AK8Hh4eY8aMQQSDQER8yrhx41xdXfXLEA779Onj7OyMCAaBiPgUCIqjR4/WB0UIh2PHjkUEQ0FEfAYIii4uLvpw6OjoiAiGAsc8olyiKStQKBXGySuNGDD9999/79lxdGayFBkcBtIJrNm2jlw2h14xAq88orJGe2pXUV6G3N1foJRrEf3g8hgVxSqtVuvfybLzAFtEGzASUS7V7F+b132YvYObOaI9fx4rMeMzw4fZIXqAUfzfvTK730QXYqGeLgPta+TaP0+UI3qAi4i3z1cGdLUSCEnf91O6vGr/8K5MLlUjGoCLiEWPavhCDiLUg4EqClWIBuAiokqpE9oSEetj52xWXU6LiIhLUVgj0eg0iFAPpUKjpcfwKFInI2ABEZGABUREAhYQEQlYQEQkYAERkYAFREQCFhARCVhARCRgARGRgAVERAIWkHNWUGbmgz79Ot+5cwsRjAcREYnsHWZ9MN/Fxa2JfbKyMmImDEX/jpGj+hcU5iNCQ5CiGQkthSOGv+BE+rS0FPTvKCoqFIsrEaERTFjE+6n3tmz5Lv1BqlKp8Gzj/eabsZ07ddNvOnwk8edfdhUU5PF4Zu1DO74bO9fBwbGx9VA0v/lWTPyaLSEhYaDLxoQ1t27/JZNJnZxcxoyeMGzoqB9+TPhx+2Z4OpTgsTNnw8rGDn3w15+3/bAxbvma+O9W5eQ8FFpaTZr05uBBI27euj57zjuww4SJwyf/Z9obU95BhGcx1aJZoVB8NP89Dpf71ar1G9ZtD2oXumjxnJKSYtiUlHTzq6+XjR41fuuWvXFffCuuqlz6+fwm1tdl5aqlpWUlXyxf8/3Wn0ZFx6z5dsWf16/EvPb6qFExoGzi/lPDho5u4tBsNlsqlWzfsWXpkpW/Hfw9KmrIN2viYFNIcNjiRXGwQ8LGHeNjpiDCc5hqRGSxWN98nWBnJ7KysoaHU6fM2L9/T/Ld230iB2Q9zODxeANfHQZauLq4LVm0orCoAPZpbH1dMrMeRI98LTCgHSy7Dh/j5xvg6OhsZmbG4/IYDIb+WGq1urFD67dOiJmiD8CDBo6AUJqRkda9e08+XwBrLC2F8GqI8BymKiLIpFKr4teufJCRJpFU60+KraoSw32HsM4gzfuzpkGZ2KlTN2cnF1tbuybW1yW8xyu79/wAL9itW0RoSIfAwOCXOrQeb29f/QJoB/fVkmpEeBGmWjTn5mbPmfuOUqlcuODzTRt3JmzYUbvJw8Pzu/ht0AretHkt1MlmvjvlXkpyE+vr8t9ZC6ZNjU1KujH3w5nRo/vDnhDhmn9oPRB3n3lMpkJtBqYaEc+cPaHRaD75eLn+V4dGRt2tPj6+nyxcBjtAdnDrtvULP571054jXC63wfV1nwjRbvTo8XArLy87cfLw1u/XW1vbjBs7qfmHJvwzTDUiqlRKaPnWxp6Tp576lJKSfPduEnpSjwwL6zT1jRmQNwGxGltf+0SJRHLy1FF9CIRSO+a1yUFBIdCmbv6hXwiZKLoxTFXEwIBg0OjosV/LykoTD+67n3oXQlfG40qb5Oq1yx8vmn3u/Om8/FzIsEBLwsnR2dHRqbH1ta8JNcj4tV9Cyxq25hfknTp9DNKHoCxssrCwhANBu7uwsKCJQzfxhoVP6otXrlyEV0CE5zDVojk8/JXXxv0nYVP8+g2ru3WNmD9v6c+/7Ny950cmkwnZQbVatXHjGkjECAQWwcHtV8TFg2STJk5tcH3tawoEgi9XfAcJwtlz3oYqIOQRIeEHrWzY1K/vwOMnDs35cMaE8VNgZWOH9vUNaOwN+/kFdu0avmHjN0VFBTPemYUIz4LLJEy/fJsb1kfk0IakNp7h0sGiNgHmgV2FqLVDuvgIWEBEJGABEZGABUREAhYQEQlYQEQkYAERkYAFREQCFhARCVhARCRgARGRgAVERAIWEBEJWICLiFYiro5BBo3Wh8dncXm0mAQBlw/JEzBL82oQ4VlyUqW2zlxEA3AR0TOQLy5WIkIdJGKV0JZj40BENCDu/nwLa9bVoyWI8D/O7i7oFS1C9ACv6zVfOVpeWaxy8jIXuZrR7crZehgMXVW5uqpMeeVwyaQFbaxEdLksHF4iAll3pek3JTUyTXlBoyW1UqlkPQFRgFajUapUBpuPQS6Xc7nc2s9iJmBxuAxnH7NuA+1YLAaiDdiJ+EKys7MPHDjwwQcfIGpYunTp+fPnly9f3r17d0Q9EokkLi4ODofojSmJKBaLCwsLnZycrKysEDXcu3fvk08+AdfDw8Pj4+ORAdm7d29oaGhgYCCiJSZTDystLY2Ojvby8qLOQmD37t1gIXo8IWLapUuXkAEZMmQIxMXKSprOoWgaIkJFCvw4c+YMVKcQZaSkpNy4cUO/DN7v2rULGRALC4sdOx5Po/Pw4cPc3FxEM0xAxDlz5kD9oWPHjohidu7cWVRUVPsQimkDB0XA2tra2dk5NjYWjo7oBO4i7tmzZ9iwYXw+H1EM/PC14VAPVEn1IcrA8Hi8gwcPQiEAy/QpqfEV8eLFi3APFkZGRiLq2b59O4RDrVar+x+w8v79+8hIdOr0eM4dCI3nzp1DNADTVjN8+8ePH//iiy+QwYGaIjQajBILGwT+QyZPnqxWq9ns1jxUCtOIyGQyjWIhhoCFcL969Wr41d9QSQAAD6ZJREFUz0StF7xELC8vnz59Oiz06tULEeowb948KCVqalrtACW8oj38369atQoRGgKKCCig9Q35iIgI1LrAJSIePnwY7pctW0ZpvtrUgWpijx49oA8mOTkZtS6wEHHhwoUCgQARmgHUnqHvEdKNsHzrVuu5fqCRRayoqID78ePHGyZH02pwc3t85cANGzYcPXoUtQqMKeKxY8cSExNhISQkBBFenoSEBOgYhIX8fJO/1qQxRbxw4cIbb7yBCP8CfXph9+7d27ZtQ6aMcUQ8ffo03JNBeC2FvjseFmQyGTJNDC2iSqXq1q1bWFgYIrQoU6dORU/6RXfu3IlMEIOKCJ25ZWVlkAmzs7NDBAqIioqCLxl6KU1u4L3hRIyLi6uqqnJycmrdfaZGZ/bs2e7u7pCOOHjwIDIdDOQEJGB9n4AI1KNvSt++fRvi4siRI5EpQLmIUExwuVwvL6/g4GBEMCCLFy/OzMyEhWvXrnXt2hXhDbVFM3wR0DT28fEhHSdGwdvbG+6vX7/+9ddfI7yhUETooTfWIOd/yfPXaDZpZs6cCZkK9OTUVYQrVIm4b9++v/76q0OHDsjUuHPnzvDhw1HromfPnuhJTwy2p2VRJSI0jaEHD5ka+oEtEyZMQK0R+B/Td+5jCFWnCkDiGlKGkKxBpsP3339fWlo6b9481EqBTycUCik9JfcfY3pTjlBEfHw8i8WKjY1FBGNAYWMFMqtGPAvupYBku5WVVau3cO7cudj+IhSK6OzsbBIjNxctWgSZ9tdffx21dqBohioTwhIKi2b1Eww2v9s/A8J2//79Bw8ejGgAqSNiyttvvw0N5N69eyOCsaG2ZyUyMlKpxHRm7IkTJ06fPp1WFtK0jgj4+flBXzPCj+joaKga6qf1oA80rSNiS1RU1JYtWzw8PBDNoG8dERorWq0Wn08O7wfK4l9//ZWMzMUNaovm7OxsqIohPBCLxREREadPn6athfStI3p7eysUChxmbCkoKIB64dWrVzFPJ1EKqSMamQcPHsyaNevQoUOI3tA6j1hVVcVkMvWD140C9O5AD97evXsRAWMoP3nq0qVLK1asQEYCjr527VpioR761hGB0NDQM2fODB06FJqrBpiQvS4nT54EBbdu3YoIT6BjHRE6LZKSkuqNube1tYXoaBgdExMTr1y5YsRgjCE41xGpioibNm1ycXGptxJarBAgEfXs3Lnzzp07xMJ6iEQiPC1ElBbN7777ro2NTe1DCL3t2rUzwNn1CQkJRUVF0IOHCM9C0zpi3759hwwZwuH8faFXUFB/LhmlrF69msFgzJ49GxGeg9Z5xBkzZly7dg3kgP6M9evX+/j4IMr4/PPPIYWOT18ObtCxjlhLfHy8h4cH9DhbW1tTauH8+fNDQkKIhU2Acx2xWTU2tUorl2jRP4Tx8UfLlixZ0ql9z+oKqk5cX7J4yaDh/QYMGIAIjQN1xGnTpgUEBCD8eEHRnHKtKumCuLxQaW5ByeXiWwT4CFyBtiJf5xUs6NjX2tnLHBHqAPkyqBrBtwT3+jWw7Ofnt2fPHoQNTUXEayfKS/NVvUY5WdpyEPbAlysuUf3+S1H4ELs2gZRfRNKE8Pf3T01NhY7W2jXQ4/rWW28hnGi0jnj1WLm4RN0r2tEkLATg393agTv0LXd4549STHUGXyqIiYkxN3+mlGjTpk2/fv0QTjQsYkWxsjRP0X2oAzJB+k10vnkW04k1jMKIESNcXV1rH/L5fAzn0G9YRLAQahTINOHyWJUlqqpyTBNmRgGSCbXtZchw9enTB2FGwyJKxBp7dxMeQOruL6goJiI+BYKi/hpBAoFgypQpCD8aFlGl0Kpq/nG+xvhIKlU6DZnT5xkgKEIvF4RDPC/yReZVx5FH96WQc5VVaZRybY1cg1oCAeoe2e496O4/tbsItQQCIVur0cG9QMhy8jKztPlXjVoiIkakXq9Kuyl9dE/q4idUqXQsNovFYSNmi2UtuvYYAvfVLZRRkNYw1EqVNlup0+qq9peaC1htwwTtwoUWVv/kDRMRsSD9ZvWFxDIbFwGLJ2g3wL4282wqOPgiebUiJ0t271q+VxC/50g7Nufleo+JiEZGo9Ed3loorUZu7Z255ib8c5hb8uAm8rIpzxFvWpAVOdY+qJuw+U8nIhqT4pyafWtyfbq5CN15qLVg624Ftzt/lJTkKXqPsm/ms3C5gj0NEZcpj2wrbtcf6vmtx8JaHP3ty0qZUN9o5v5ERONQ+KgmcX2hZxdX1HqxdbcuLkRHfyxszs5ERCOgVmn3r81r07k1W6jHro21TMq8furFPa5ERCNw+Psin+6t30I9dl52j1IVOenSpncjIhqau3+IpVIGT2AaY5paBL5IeO6XF1QWiYiG5tJv5Q7etohOmAt5TDYbcqVN7IORiEs+nTdn7gzUqkm+LLZrY8nmYTrc/Xby6bmLukmllailsfOyvXulqSsBtpiIBxJ/WrHyU0RokvvXJTwBHefF4/E55YXKiqJGJ1RvMRHT0nCcKxsrVAptSU6NhR1NT6kRiPiZdxoNii3TszJr9vTbt2/AwvHjhzYl7PRt63/nzq3NW78DO6HbNDAg+K233gsMaKff+fCRxJ/27cjPzzU353frGj7jnf/a2tafwhX2+fmXXQUFeTyeWfvQju/GznVwcEQmzsMUqcjLElHGzaQT5y7tKirJ4vH4HUKiBvWfweU+jr7b9yyEvmt/3x5nz28XV5c4iNpED53bxj0EPe5gVB888s2NpGM6rTbIv2db786IMizt+YXZjVYTWyYiLvtstZ9vQN8+UYn7T3l7tc3JeTR33kx7kcO6tT98F7/NnM+f++GM4uLHo49OnDj81dfLogYM+X7L3s8+XZWWfn/Bwg/qnUmYlHQT9hk9avzWLXvjvvhWXFW59PP5yPQRl6g1KqpGMyTfO7dz3yK/tl3nxO54LXpR0t0zP/8ap9/EYrGzHt3Ozrk7a+b2Tz86xudb7d2/TL/pzPkfr15PHD5o1n9nbvfyDDt17ntEGRweuyBT3tjWlhHRwsKCxWZzuFwrK2sWi3Xw158h2i2Y/5mPjy/cPl6wTK1WHz/xeMLWfT/vjIjoPXHCG+7ubcLCOr337ofgYnLy7bqvlvUwg8fjDXx1mKuLW1Bg8JJFK2JnzkGmj6RSTV0z5cyF7d6eHQcPmCmycw/0Cx8SFXvj9rFK8d9DD5VKOdjG45pDjOwYOrC49KFS+Xg+6b9uHw0O6t214zB4VnjX0X4+FM4JwzFj10gbHVtJSas5LT0FAmTtfEt8Ph+0y8hIAx0zMtODAkNq9/T3D4L7BxlpdZ/eIawzFOjvz5p26PCBgsJ8KLhBR2T6yCQaikTUarW5+SkQDmvXgJRwX1D4QP8QPNMX0wDf/PGgGJm8Sq1WlZbluLsG1T7Lw60dohKegCWtavgUDkpG38hkUjtbUd01fL4AVspr5FAKw/LT9eaPT0CWy58Zq+nh4QkF+u69P27avLZ69fLAwGCoI7YCF6mbZUilqtFqNSfObD559plZSauqS/ULbPbz4yp0ECbhD6fOJqhcIirRaXSNDbWkRESBwEIqfaZ9BA9BTXMzcyaTCUY+Xf9kGfav9wpQoH+ycJlGo4FGz9Zt6xd+POunPUewnbelmVhYsUpKWmbcfz04HDOoCPbs/lq3TsOfOaKgqcw550mMlCue/lJyeVM5538JxCBljZZv2bByLVk017Y5/P2CUtNSamdAq5ZUZ2c/DAh4PDliWx+/O8lPr517724S+l8BXUtKSvLdJ+uhugn1yKlvzBCLK8vLmzugCFssrNlqJSUiwr+3q3NARWWBg72n/mZr48pksvn8poamcthcG2vngsL02jVpGdcQZagVGjNBozWTFhPR0sLywYPU9AepIM2IEWMVipqVX30GzefMzAfLln8MMe/VqKGw29ixk65cuQjpm8LCgpu3rq9d91X79h0DnhXx6rXLHy+afe786bz8XHjB/fv3ODk6Ozo6IRPH2p7DZlF1bmRkz0l37p2FVnBxyaO8/NRdPy9Zt2V6Tc0LhhpAlgea21euJ0Jt8tylnfkFaYgylHK1s3ejOdQWK5qjo2PiVix+/4M3l366qmuXHqu+XLdpy9pp08dDVAsJDvvm6wRr68ezx/bvNxAcBRE3b/kO7OwZEfn22x/Ue6lJE6dCPXrjxjWlZSWwT3Bw+xVx8SZ3GsfzeLYTHPuxUOQtQhQQ2q7P+NFLz17Yfvz0JjMzC0+P0BlT15uZCZp+1oC+06SyykPH4rU6baBfxJCod7fvXQDLiAKkpVLf0EaHADc8G9i14+XQum8faap982d257fvZQU/PMKMA+vy2UJLSxEd54jKuJwzZparlV3Dw47I6BuDEtDVQiFRIPpRI1GK3HiNWYjIyVMGJrCL8I9DD4WOFlzzhn+S5JTze/YvbXCTwNxKKhc3uKl7p5FDB76HWoisR7e27mi4BwGSREwGEzVUTerRZRRk0VEjlGaW9xxmjRqHiGhoeo20+/N0hUu7hmda8/PpOnvm/zW4CfpCapPS9eDxWrIS4uYS2Nh7UKkULBan7lSLzXkP0ooaDkfnGdTUmyQiGhrfDpbpt6Q11YoGT94D1Wy5LsiocDg8W5uWfA81FdV9xr6giUbqiEZg8BtOmdfytVpaTBNVlFbi38Hc4UWTyxERjcP4eR6ZV3JRa6covczemRkcbvXCPYmIxsHGgTvhI9f0i9katQlP/9c0JRllPkGcvuOaNe8wEdFo8C04r81xAxelFXLUutCqtXnJhZ5+7M79bZr5FCKiMRHact750oejlebeLpBXtZL8YklWRer57J5DrLtEvUSHCGk1G5+oSY45abLzB0p5Fjwmlyu0F2B7ml8TSMrkklJZVbGk/SvWY2e+9CXGiIhY4O7Hn/iRx6N70rRb0sxreTbO5soaLZvLZnHZDCamnexMFlMlV2pUGqTTVhTIoV0c1EkQ1N3zZWdG1ENExIg2QYI2T7K+Rdk1T6YuVtfItAoZJSPH/j3mFjoGky0Q8vhCtrOXE4f7r6p5REQccfQwc/RAtKJhEblmDC0y4WFXAmsOk2Xyw8ZoRcPh1NKGU/LIhHMK2SkSWyfTPq+AbjQsooM7z3THocolapErz8Ka1DpMiUYjomtbs/O/NGuuT9w4tSO/y4Dm5lEJmNDU9Zrv/iFOvyVp39vOxpHLYuOe+q6RaapKlZcOFg+c7OjgQceJjkyaF1w4POuu9Na5ysKsGhYb66LaSsSpKld5Bgk6D7CBblxEMDVeIGItCjnWffM6LTITkO5KE6a5IhIIlEKalgQsICISsICISMACIiIBC4iIBCwgIhKw4P8BAAD//2v4e7oAAAAGSURBVAMA1x7mMDWkAPIAAAAASUVORK5CYII=",
625
+ "text/plain": [
626
+ "<IPython.core.display.Image object>"
627
+ ]
628
+ },
629
+ "metadata": {},
630
+ "output_type": "display_data"
631
+ }
632
+ ],
633
+ "source": [
634
+ "from IPython.display import Image, display\n",
635
+ "\n",
636
+ "display(Image(graph.get_graph(xray=True).draw_mermaid_png()))"
637
+ ]
638
+ },
639
+ {
640
+ "cell_type": "code",
641
+ "execution_count": null,
642
+ "id": "5987d58c",
643
+ "metadata": {},
644
+ "outputs": [],
645
+ "source": [
646
+ "question = \"\"\n",
647
+ "messages = [HumanMessage(content=question)]\n",
648
+ "messages = graph.invoke({\"messages\": messages})"
649
+ ]
650
+ },
651
+ {
652
+ "cell_type": "code",
653
+ "execution_count": null,
654
+ "id": "330cbf17",
655
+ "metadata": {},
656
+ "outputs": [],
657
+ "source": [
658
+ "for m in messages['messages']:\n",
659
+ " m.pretty_print()"
660
+ ]
661
+ }
662
+ ],
663
+ "metadata": {
664
+ "kernelspec": {
665
+ "display_name": "aiagent",
666
+ "language": "python",
667
+ "name": "python3"
668
+ },
669
+ "language_info": {
670
+ "codemirror_mode": {
671
+ "name": "ipython",
672
+ "version": 3
673
+ },
674
+ "file_extension": ".py",
675
+ "mimetype": "text/x-python",
676
+ "name": "python",
677
+ "nbconvert_exporter": "python",
678
+ "pygments_lexer": "ipython3",
679
+ "version": "3.12.9"
680
+ }
681
+ },
682
+ "nbformat": 4,
683
+ "nbformat_minor": 5
684
+ }